Geologic shear fractures such as faults and slip surfaces involve marked friction along the discontinuities as they are subjected to significant confining pressures. This friction plays a critical role in the growth of these shear fractures, as revealed by the fracture mechanics theory of Palmer and Rice decades ago. In this paper, we develop a novel phase-field model of shear fracture in pressure-sensitive geomaterials, honoring the role of friction in the fracture propagation mechanism. Building on a recently proposed phase-field method for frictional interfaces, we formulate a set of governing equations for different contact conditions (or lack thereof) in which frictional energy dissipation emerges in the crack driving force during slip. We then derive the degradation function and the threshold fracture energy of the phase-field model such that the stress-strain behavior is insensitive to the length parameter for phase-field regularization. This derivation procedure extends a methodology used in recent phase-field models of cohesive tensile fracture to shear fracture in frictional materials in which peak and residual strengths coexist and evolve by confining pressure. The resulting phase-field formulation is demonstrably consistent with the theory of Palmer and Rice. Numerical examples showcase that the proposed phase-field model is a physically sound and numerically efficient method for simulating shear fracture processes in geologic materials, such as faulting and slip surface growth.