ﻻ يوجد ملخص باللغة العربية
We study stationary solutions in the differential kinetic equation, which was introduced in for description of a local dual cascade wave turbulence. We give a full classification of single-cascade states in which there is a finite flux of only one conserved quantity. Analysis of the steady-state spectrum is based on a phase-space analysis of orbits of the underlying dynamical system. The orbits of the dynamical system demonstrate the blow-up behaviour which corresponds to a sharp front where the spectrum vanishes at a finite wave number. The roles of the KZ and thermodynamic scaling as intermediate asymptotic, as well as of singular solutions, are discussed.
We report on the observation of surface gravity wave turbulence at scales larger than the forcing ones in a large basin. In addition to the downscale transfer usually reported in gravity wave turbulence, an upscale transfer is observed, interpreted a
We investigate experimentally turbulence of surface gravity waves in the Coriolis facility in Grenoble by using both high sensitivity local probes and a time and space resolved stereoscopic reconstruction of the water surface. We show that the water
The conventional approach to the turbulent energy cascade, based on Richardson-Kolmogorov phenomenology, ignores the topology of emerging vortices, which is related to the helicity of the turbulent flow. It is generally believed that helicity can pla
Helicity, as one of only two inviscid invariants in three-dimensional turbulence, plays an important role in the generation and evolution of turbulence. From the traditional viewpoint, there exists only one channel of helicity cascade similar to that
We solve the Navier-Stokes equations with two simultaneous forcings. One forcing is applied at a given large-scale and it injects energy. The other forcing is applied at all scales belonging to the inertial range and it injects helicity. In this way