ﻻ يوجد ملخص باللغة العربية
We study systematically the scattering processes and the conductance spectra in nodal-line semimetalsuperconductor junctions using the extended Blonder-Tinkham-Klapwijk theory. The coexistence of peculiar quadruple reflections are found, which are the specular normal reflection, the retro-normal reflection, the specular Andreev reflection and the retro-Andreev reflection. The incident angle dependence and the quasiparticle energy dependence of the double normal reflections and the double Andreev reflections are investigated under various values of parameters such as the interfacial barrier height, the chemical potentials, and the orbital coupling strength. It is found that the appearance and the disappearance of the reflections and their magnitudes can be controlled through tuning these parameters. The scattering mechanism for the reflections are analyzed in details from the viewpoint of the band structure. We also investigate the conductance spectra for the junctions, which show distinctive features and strong anisotropy about the orientation relationships of the nodal line and interface. The unique scattering processes and conductance spectra found in the junctions are helpful in designing superconducting electronic devices and searching for the nodal line in materials experimentally.
Sub-gap conductance at a large area junction with a rough interface of a ferromagnet and a high-T$_{C}$ superconductor is superimposed by multiple peaks which is not expected from an ideal point contact Andreev reflection process. We demonstrate this
We investigate theoretically charge transport in hybrid multiterminal junctions with superconducting leads kept at different voltages. It is found that multiple Andreev reflections involving several superconducting leads give rise to rich subharmonic
We show that noncollinear Andreev reflections can be induced at interfaces of semiconductor nanowires with spin-orbit coupling, Zeeman splitting and proximity-induced superconductivity. In a noncollinear local Andreev reflection, the spin polarizatio
We study the topological properties of the nodal-line semimetal superconductor. The single band inversion and the double band inversion coexist in an $s$-wave nodal-line semimetal superconductor. In the single/double band inversion region, the system
We analyze the non-local transport properties of a d-wave superconductor coupled to metallic electrodes at nanoscale distances. We show that the non-local conductance exhibits an algebraical decay with distance rather than the exponential behavior wh