ﻻ يوجد ملخص باللغة العربية
By the theorem of Mantel $[5]$ it is known that a graph with $n$ vertices and $lfloor frac{n^{2}}{4} rfloor+1$ edges must contain a triangle. A theorem of ErdH{o}s gives a strengthening: there are not only one, but at least $lfloorfrac{n}{2}rfloor$ triangles. We give a further improvement: if there is no vertex contained by all triangles then there are at least $n-2$ of them. There are some natural generalizations when $(a)$ complete graphs are considered (rather than triangles), $(b)$ the graph has $t$ extra edges (not only one) or $(c)$ it is supposed that there are no $s$ vertices such that every triangle contains one of them. We were not able to prove these generalizations, they are posed as conjectures.
Alon and Yuster proved that the number of orientations of any $n$-vertex graph in which every $K_3$ is transitively oriented is at most $2^{lfloor n^2/4rfloor}$ for $n geq 10^4$ and conjectured that the precise lower bound on $n$ should be $n geq 8$.
Pathological science occurs when well-intentioned scientists spend extended time and resources studying a phenomena that isnt real. Researchers who get caught up in pathological science are usually following the scientific method and performing caref
We study whether one can write a Matrix Product Density Operator (MPDO) as the Gibbs state of a quasi-local parent Hamiltonian. We conjecture this is the case for generic MPDO and give supporting evidences. To investigate the locality of the parent H
Given an acyclic digraph $D$, the competition graph of $D$, denoted by $C(D)$, is the simple graph having vertex set $V(D)$ and edge set ${uv mid (u, w), (v, w) in A(D) text{ for some } w in V(D) }$. The phylogeny graph of an acyclic digraph $D$, den
In an edge-colored graph $(G,c)$, let $d^c(v)$ denote the number of colors on the edges incident with a vertex $v$ of $G$ and $delta^c(G)$ denote the minimum value of $d^c(v)$ over all vertices $vin V(G)$. A cycle of $(G,c)$ is called proper if any t