ﻻ يوجد ملخص باللغة العربية
We compute the exact density of states and 2-point function of the $mathcal{N} =2$ super-symmetric SYK model in the large $N$ double-scaled limit, by using combinatorial tools that relate the moments of the distribution to sums over oriented chord diagrams. In particular we show how SUSY is realized on the (highly degenerate) Hilbert space of chords. We further calculate analytically the number of ground states of the model in each charge sector at finite $N$, and compare it to the results from the double-scaled limit. Our results reduce to the super-Schwarzian action in the low energy short interaction length limit. They imply that the conformal ansatz of the 2-point function is inconsistent due to the large number of ground states, and we show how to add this contribution. We also discuss the relation of the model to $SL_q(2|1)$. For completeness we present an overview of the $mathcal{N}=1$ super-symmetric SYK model in the large $N$ double-scaled limit.
The concepts of operator size and computational complexity play important roles in the study of quantum chaos and holographic duality because they help characterize the structure of time-evolving Heisenberg operators. It is particularly important to
We consider multi-energy level distributions in the SYK model, and in particular, the role of global fluctuations in the density of states of the SYK model. The connected contributions to the moments of the density of states go to zero as $N to infty
The Polyakov loop of an operator in the anti-symmetric representation in N=4 SYM theory on spacial R^3 is calculated, to leading order in 1/N and at large t Hooft coupling, by solving the saddle point equations of the corresponding quantum impurity m
We use numerical bootstrap techniques to study correlation functions of a traceless symmetric tensors of $O(N)$ with two indexes $t_{ij}$. We obtain upper bounds on operator dimensions for all the relevant representations and several values of $N$. W
We discuss upper and lower bounds on the electrical conductivity of finite temperature strongly coupled quantum field theories, holographically dual to probe brane models, within linear response. In a probe limit where disorder is introduced entirely