ترغب بنشر مسار تعليمي؟ اضغط هنا

Revealing the Dark Threads of the Cosmic Web

331   0   0.0 ( 0 )
 نشر من قبل Joseph Burchett
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Modern cosmology predicts that matter in our Universe has assembled today into a vast network of filamentary structures colloquially termed the Cosmic Web. Because this matter is either electromagnetically invisible (i.e., dark) or too diffuse to image in emission, tests of this cosmic web paradigm are limited. Wide-field surveys do reveal web-like structures in the galaxy distribution, but these luminous galaxies represent less than 10% of baryonic matter. Statistics of absorption by the intergalactic medium (IGM) via spectroscopy of distant quasars support the model yet have not conclusively tied the diffuse IGM to the web. Here, we report on a new method inspired by the Physarum polycephalum slime mold that is able to infer the density field of the Cosmic Web from galaxy surveys. Applying our technique to galaxy and absorption-line surveys of the local Universe, we demonstrate that the bulk of the IGM indeed resides in the Cosmic Web. From the outskirts of Cosmic Web filaments, at approximately the cosmic mean matter density (rho_m) and approx. 5 virial radii from nearby galaxies, we detect an increasing H I absorption signature towards higher densities and the circumgalactic medium, to approx. 200 rho_m. However, the absorption is suppressed within the densest environments, suggesting shock-heating and ionization deep within filaments and/or feedback processes within galaxies.



قيم البحث

اقرأ أيضاً

The 80% of the matter in the Universe is in the form of dark matter that comprises the skeleton of the large-scale structure called the Cosmic Web. As the Cosmic Web dictates the motion of all matter in galaxies and inter-galactic media through gravi ty, knowing the distribution of dark matter is essential for studying the large-scale structure. However, the Cosmic Webs detailed structure is unknown because it is dominated by dark matter and warm-hot inter-galactic media, both of which are hard to trace. Here we show that we can reconstruct the Cosmic Web from the galaxy distribution using the convolutional-neural-network-based deep-learning algorithm. We find the mapping between the position and velocity of galaxies and the Cosmic Web using the results of the state-of-the-art cosmological galaxy simulations, Illustris-TNG. We confirm the mapping by applying it to the EAGLE simulation. Finally, using the local galaxy sample from Cosmicflows-3, we find the dark-matter map in the local Universe. We anticipate that the local dark-matter map will illuminate the studies of the nature of dark matter and the formation and evolution of the Local Group. High-resolution simulations and precise distance measurements to local galaxies will improve the accuracy of the dark-matter map.
The role of the cosmic web in shaping galaxy properties is investigated in the GAMA spectroscopic survey in the redshift range $0.03 leq z leq 0.25$. The stellar mass, $u - r$ dust corrected colour and specific star formation rate (sSFR) of galaxies are analysed as a function of their distances to the 3D cosmic web features, such as nodes, filaments and walls, as reconstructed by DisPerSE. Significant mass and type/colour gradients are found for the whole population, with more massive and/or passive galaxies being located closer to the filament and wall than their less massive and/or star-forming counterparts. Mass segregation persists among the star-forming population alone. The red fraction of galaxies increases when closing in on nodes, and on filaments regardless of the distance to nodes. Similarly, the star-forming population reddens (or lowers its sSFR) at fixed mass when closing in on filament, implying that some quenching takes place. Comparable trends are also found in the state-of-the-art hydrodynamical simulation Horizon-AGN. These results suggest that on top of stellar mass and large-scale density, the traceless component of the tides from the anisotropic large-scale environment also shapes galactic properties. An extension of excursion theory accounting for filamentary tides provides a qualitative explanation in terms of anisotropic assembly bias: at a given mass, the accretion rate varies with the orientation and distance to filaments. It also explains the absence of type/colour gradients in the data on smaller, non-linear scales.
176 - Sunil Simha 2020
FRB 190608 was detected by ASKAP and localized to a spiral galaxy at $z_{host}=0.11778$ in the SDSS footprint. The burst has a large dispersion measure ($DM_{FRB}=339.8$ $pc/cm^3$) compared to the expected cosmic average at its redshift. It also has a large rotation measure ($RM_{FRB}=353$ $rad/m^2$) and scattering timescale ($tau=3.3$ $ms$ at $1.28$ $GHz$). Chittidi et al (2020) perform a detailed analysis of the ultraviolet and optical emission of the host galaxy and estimate the host DM contribution to be $110pm 37$ $pc/cm^3$. This work complements theirs and reports the analysis of the optical data of galaxies in the foreground of FRB 190608 to explore their contributions to the FRB signal. Together, the two manuscripts delineate an observationally driven, end-to-end study of matter distribution along an FRB sightline; the first study of its kind. Combining KCWI observations and public SDSS data, we estimate the expected cosmic dispersion measure $DM_{cosmic}$ along the sightline to FRB 190608. We first estimate the contribution of hot, ionized gas in intervening virialized halos ($DM_{halos} approx 7-28$ $pc/cm^3$). Then, using the Monte Carlo Physarum Machine (MCPM) methodology, we produce a 3D map of ionized gas in cosmic web filaments and compute the DM contribution from matter outside halos ($DM_{IGM} approx 91-126$ $pc/cm^3$). This implies a greater fraction of ionized gas along this sightline is extant outside virialized halos. We also investigate whether the intervening halos can account for the large FRB rotation measure and pulse width and conclude that it is implausible. Both the pulse broadening and the large Faraday rotation likely arise from the progenitor environment or the host galaxy.
323 - Biswajit Pandey 2019
We propose an alternative physical mechanism to explain the observed accelerated expansion of the Universe based on the configuration entropy of the cosmic web and its evolution. We show that the sheets, filaments and clusters in the cosmic web act a s sinks whereas the voids act as the sources of information. The differential entropy of the cosmic velocity field increases with time and also acts as a source of entropy. The growth of non-linear structures and the emergence of the cosmic web may lead to a situation where the overall dissipation rate of information at the sinks are about to dominate the generation rate of information from the sources. Consequently, the Universe either requires a dispersal of the overdense non-linear structures or an accelerated expansion of the underdense voids to prevent a violation of the second law of thermodynamics. The dispersal of the sheets, filaments and clusters are not a viable option due to the attractive nature of gravity but the repulsive and outward peculiar gravitational acceleration at the voids makes it easier to stretch them at an accelerated rate. We argue that this accelerated expansion of the voids inside the cosmic web may mimic the behaviour of dark energy.
134 - Marius Cautun 2014
The cosmic web is the largest scale manifestation of the anisotropic gravitational collapse of matter. It represents the transitional stage between linear and non-linear structures and contains easily accessible information about the early phases of structure formation processes. Here we investigate the characteristics and the time evolution of morphological components since. Our analysis involves the application of the NEXUS Multiscale Morphology Filter (MMF) technique, predominantly its NEXUS+ version, to high resolution and large volume cosmological simulations. We quantify the cosmic web components in terms of their mass and volume content, their density distribution and halo populations. We employ new analysis techniques to determine the spatial extent of filaments and sheets, like their total length and local width. This analysis identifies cluster and filaments as the most prominent components of the web. In contrast, while voids and sheets take most of the volume, they correspond to underdense environments and are devoid of group-sized and more massive haloes. At early times the cosmos is dominated by tenuous filaments and sheets, which, during subsequent evolution, merge together, such that the present day web is dominated by fewer, but much more massive, structures. The analysis of the mass transport between environments clearly shows how matter flows from voids into walls, and then via filaments into cluster regions, which form the nodes of the cosmic web. We also study the properties of individual filamentary branches, to find long, almost straight, filaments extending to distances larger than 100Mpc/h. These constitute the bridges between massive clusters, which seem to form along approximatively straight lines.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا