ﻻ يوجد ملخص باللغة العربية
The so-called Landau-Levich-Deryaguin problem treats the coating flow dynamics of a thin viscous liquid film entrained by a moving solid surface. In this context, we use a simple experimental set-up consisting of a partially-immersed rotating disc in a liquid tank to study the role of inertia, and also curvature, on liquid entrainment. Using water and UCON$^{mbox{{TM}}}$ mixtures, we point out a rich phenomenology in the presence of strong inertia : ejection of multiple liquid sheets on the emerging side of the disc, sheet fragmentation, ligament formation and atomization of the liquid flux entrained over the discs rim. We focus our study on a single liquid sheet and the related average liquid flow rate entrained over a thin disc for various depth-to-radius ratio $h/R < 1$. We show that the liquid sheet is created via a ballistic mechanism as liquid is lifted out of the pool by the rotating disc. We then show that the flow rate in the entrained liquid film is controlled by both viscous and surface tension forces as in the classical Landau-Levich-Deryaguin problem despite the three dimensional, non-uniform and unsteady nature of the flow, and also despite the large values of the film thickness based flow Reynolds number. When the characteristic Froude and Weber numbers become significant, strong inertial effects influence the entrained liquid flux over the disc at large radius-to-immersion-depth ratio, namely via entrainment by the discs lateral walls and via a contribution to the flow rate extracted from the 3D liquid sheet itself, respectively.
We consider the rotating and translating equilibria of open finite vortex sheets with endpoints in two-dimensional potential flows. New results are obtained concerning the stability of these equilibrium configurations which complement analogous resul
We consider relative equilibrium solutions of the two-dimensional Euler equations in which the vorticity is concentrated on a union of finite-length vortex sheets. Using methods of complex analysis, more specifically the theory of the Riemann-Hilbert
We quantify the strength of the waves and their impact on the energy cascade in rotating turbulence by studying the wave number and frequency energy spectrum, and the time correlation functions of individual Fourier modes in numerical simulations in
Complete Hamiltonian formalism is suggested for inertial waves in rotating incompressible fluid. Resonance three-wave interaction processes -- decay instability and confluence of two waves -- are shown to play a key role in the weakly nonlinear dynam
Recently, the nature of viscoelastic drag-reducing turbulence (DRT), especially maximum drag reduction (MDR) state, has become a focus of controversy. It has long been regarded as polymers-modulated inertial turbulence (IT), but is challenged by the