ترغب بنشر مسار تعليمي؟ اضغط هنا

Analogue Hawking Effect: a master equation

73   0   0.0 ( 0 )
 نشر من قبل Francesco Belgiorno
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider further on the problem of the analogue Hawking radiation. We propose a fourth order ordinary differential equation, which allows to discuss the problem of Hawking radiation in analogue gravity in a unified way, encompassing fluids and dielectric media. In a suitable approximation, involving weak dispersive effects, WKB solutions are obtained far from the horizon (turning point), and furthermore an equation governing the behaviour near the horizon is derived, and a complete set of analytical solutions is obtained also near the horizon. The subluminal case of the original fluid model introduced by Corley and Jacobson, the case of dielectric media are discussed. We show that in this approximation scheme there is a mode which is not directly involved in the pair-creation process. Thermality is verified and a framework for calculating the grey-body factor is provided.



قيم البحث

اقرأ أيضاً

We take into account two further physical models which play an utmost importance in the framework of Analogue Gravity. We first consider Bose--Einstein condensates (BEC) and then surface gravity waves in water. Our approach is based on the use of the master equation we introduced in a previous work. A more complete analysis of the singular perturbation problem involved, with particular reference to the behavior in the neighbourhood of the (real) turning point and its connection with the WKB approximation, allows us to verify the thermal character of the particle production process. Furthermore, we can provide a simple scheme apt to calculate explicitly the greybody factors in the case of BEC and surface waves. This corroborates the improved approach we proposed for studying the analogue Hawking effect in the usual limit of small dispersive effects.
In the Unruh effect an observer with constant acceleration perceives the quantum vacuum as thermal radiation. The Unruh effect has been believed to be a pure quantum phenomenon, but here we show theoretically how the effect arises from the classical correlation of noise. We demonstrate this idea with a simple experiment on water waves where we see the first indications of a Planck spectrum in the correlation energy.
150 - T.G. Philbin 2016
We consider the wave equation for sound in a moving fluid with a fourth-order anomalous dispersion relation. The velocity of the fluid is a linear function of position, giving two points in the flow where the fluid velocity matches the group velocity of low-frequency waves. We find the exact solution for wave propagation in the flow. The scattering shows amplification of classical waves, leading to spontaneous emission when the waves are quantized. In the dispersionless limit the system corresponds to a 1+1-dimensional black-hole or white-hole binary and there is a thermal spectrum of Hawking radiation from each horizon. Dispersion changes the scattering coefficients so that the quantum emission is no longer thermal. The scattering coefficients were previously obtained by Busch and Parentani in a study of dispersive fields in de Sitter space [Phys. Rev. D 86, 104033 (2012)]. Our results give further details of the wave propagation in this exactly solvable case, where our focus is on laboratory systems.
We show a direct connection between Kubos fluctuation-dissipation relation and Hawking effect that is valid in any dimensions for any stationary or static black hole. The relevant correlators corresponding to the fluctuating part of the force, comput ed from the known expressions for the anomalous stress tensor related to gravitational anomalies, are shown to satisfy the Kubo relation, from which the temperature of a black hole as seen by an observer at an arbitrary distance is abstracted. This reproduces the Tolman temperature and hence the Hawking temperature as that measured by an observer at infinity.
The Hartle-Hawking wave function is known to be the Fourier dual of the Chern-Simons or Kodama state reduced to mini-superspace, using an integration contour covering the whole real line. But since the Chern-Simons state is a general solution of the Hamiltonian constraint (with a given ordering), its Fourier dual should provide the general solution (i.e. beyond mini-superspace) of the Wheeler DeWitt equation representing the Hamiltonian constraint in the metric representation. We write down a formal expression for such a wave function, to be seen as the generalization beyond mini-superspace of the Hartle-Hawking wave function. Its explicit evaluation (or simplification) depends only on the symmetries of the problem, and we illustrate the procedure with anisotropic Bianchi models and with the Kantowski-Sachs model. A significant difference of this approach is that we may leave the torsion inside the wave functions when we set up the ansatz for the connection, rather than setting it to zero before quantization. This allows for quantum fluctuations in the torsion, with far reaching consequences.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا