ﻻ يوجد ملخص باللغة العربية
Instrumental data are affected by systematic effects that dominate the errors and can be relevant when searching for small signals. This is the case of the K2 mission, a follow up of the Kepler mission, that, after a failure on two reaction wheels, has lost its stability properties rising strongly the systematics in the light curves and reducing its photometric precision. In this work, we have developed a general method to remove time related systematics from a set of light curves, that has been applied to K2 data. The method uses the Principal Component Analysis to retrieve the correlation between the light curves due to the systematics and to remove its effect without knowing any information other than the data itself. We have applied the method to all the K2 campaigns available at the Mikulski Archive for Space Telescopes, and we have tested the effectiveness of the procedure and its capability in preserving the astrophysical signal on a few transits and on eclipsing binaries. One product of this work is the identification of stable sources along the ecliptic plane that can be used as photometric calibrators for the upcoming Atmospheric Remote-sensing Exoplanet Large-survey mission.
With growing data from ongoing and future supernova surveys it is possible to empirically quantify the shapes of SNIa light curves in more detail, and to quantitatively relate the shape parameters with the intrinsic properties of SNIa. Building such
We present K2SC (K2 Systematics Correction), a Python pipeline to model instrumental systematics and astrophysical variability in light curves from the K2 mission. K2SC uses Gaussian process regression to model position-dependent systematics and time
Data from the Transiting Exoplanet Survey Satellite (TESS) has produced of order one million light curves at cadences of 120 s and especially 1800 s for every ~27-day observing sector during its two-year nominal mission. These data constitute a treas
We describe the results of principal component analysis (PCA) of up-the-ramp sampled IR array data from the HST WFC3 IR, JWST NIRSpec, and prototype WFIRST WFI detectors. These systems use respectively Teledyne H1R, H2RG, and H4RG-10 near-IR detector
High-Resolution Spectroscopy (HRS) has been used to study the composition and dynamics of exoplanetary atmospheres. In particular, the spectrometer CRIRES installed on the ESO-VLT has been used to record high-resolution spectra in the Near-IR of gase