ﻻ يوجد ملخص باللغة العربية
Bi-based cuprate superconductors are important materials for both fundamental research and applications. As in other cuprates, the superconducting phase in the Bi compounds lies close to an antiferromagnetic phase. Our density functional theory calculations based on the strongly-constrained-and-appropriately-normed (SCAN) exchange correlation functional in Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ reveal the persistence of magnetic moments on the copper ions for oxygen concentrations ranging from the pristine phase to the optimally hole-doped compound. We also find the existence of ferrimagnetic solutions in the heavily doped compounds, which are expected to suppress superconductivity.
In cuprate superconductors, the doping of carriers into the parent Mott insulator induces superconductivity and various other phases whose characteristic temperatures are typically plotted versus the doping level $p$. In most materials, $p$ cannot be
The effects of structural supermodulation with the period $lambda approx26$ AA along the $b$-axis of Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ have been observed in photoemission studies from the early days as the presence of diffraction replicas of the int
Fluctuating superconductivity - vestigial Cooper pairing in the resistive state of a material - is usually associated with low dimensionality, strong disorder or low carrier density. Here, we report single particle spectroscopic, thermodynamic and ma
A magnetic field applied to type-II superconductors introduces quantized vortices that locally quench superconductivity, providing a unique opportunity to investigate electronic orders that may compete with superconductivity. This is especially true
Establishing the presence and the nature of a quantum critical point in their phase diagram is a central enigma of the high-temperature superconducting cuprates. It could explain their pseudogap and strange metal phases, and ultimately their high sup