ترغب بنشر مسار تعليمي؟ اضغط هنا

Isotopy of the Dehn twist on K3#K3 after a single stabilization

137   0   0.0 ( 0 )
 نشر من قبل Jianfeng Lin
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English
 تأليف Jianfeng Lin




اسأل ChatGPT حول البحث

Kronheimer-Mrowka recently proved that the Dehn twist along a 3-sphere in the neck of $K3#K3$ is not smoothly isotopic to the identity. This provides a new example of self-diffeomorphisms on 4-manifolds that are isotopic to the identity in the topological category but not smoothly so. (The first such examples were given by Ruberman.) In this paper, we use the Pin(2)-equivariant Bauer-Furuta invariant to show that this Dehn twist is not smoothly isotopic to the identity even after a single stabilization (connected summing with the identity map on $S^{2}times S^{2}$). This gives the first example of exotic phenomena on simply connected smooth 4-manifolds that do not disappear after a single stabilization.



قيم البحث

اقرأ أيضاً

The Nielsen Realization problem asks when the group homomorphism from Diff(M) to pi_0 Diff(M) admits a section. For M a closed surface, Kerckhoff proved that a section exists over any finite subgroup, but Morita proved that if the genus is large enou gh then no section exists over the entire mapping class group. We prove the first nonexistence theorem of this type in dimension 4: if M is a smooth closed oriented 4-manifold which contains a K3 surface as a connected summand then no section exists over the whole of the mapping class group. This is done by showing that certain obstructions lying in the rational cohomology of B(pi_0 Diff(M)) are nonzero. We detect these classes by showing that they are nonzero when pulled back to the moduli space of Einstein metrics on a K3 surface.
The smooth (resp. metric and complex) Nielsen Realization Problem for K3 surfaces $M$ asks: when can a finite group $G$ of mapping classes of $M$ be realized by a finite group of diffeomorphisms (resp. isometries of a Ricci-flat metric, or automorphi sms of a complex structure)? We solve the metric and compl
165 - Daniele Faenzi 2018
We show that any polarized K3 surface supports special Ulrich bundles of rank 2.
We construct a canonical basis of two-cycles, on a $K3$ surface, in which the intersection form takes the canonical form $2E_8(-1) oplus 3H$. The basic elements are realized by formal sums of smooth submanifolds.
We study how the degrees of irrationality of moduli spaces of polarized K3 surfaces grow with respect to the genus. We prove that the growth is bounded by a polynomial function of degree $14+varepsilon$ for any $varepsilon>0$ and, for three sets of i nfinitely many genera, the bounds can be improved to degree 10. The main ingredients in our proof are the modularity of the generating series of Heegner divisors due to Borcherds and its generalization to higher codimensions due to Kudla, Millson, Zhang, Bruinier, and Westerholt-Raum. For special genera, the proof is also built upon the existence of K3 surfaces associated with certain cubic fourfolds, Gushel-Mukai fourfolds, and hyperkaehler fourfolds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا