ﻻ يوجد ملخص باللغة العربية
Quantum effects can stabilize wormhole solutions in general relativity, allowing information and matter to be transported between two connected spacetimes. Here we study the revival dynamics of signals sent between two weakly coupled quantum chaotic systems, represented as identical Sachdev-Ye-Kitaev models, that realize holographically a traversable wormhole in anti-de Sitter spacetime AdS$_2$ for large number $N$ of particles. In this limit we find clear signatures of wormhole behavior: an excitation created in one system is quickly scrambled under its unitary dynamics, and is reassembled in the other system after a characteristic time consistent with holography predictions. This leads to revival oscillations that at low but finite temperature decay as a power-law in time. For small $N$ we also observe revivals and show that they arise from a different, non-gravitational mechanism.
Recent work has shown that coupling two identical Sachdev-Ye-Kitaev (SYK) models can realize a phase of matter that is holographically dual to an eternal traversable wormhole. This phase supports revival oscillations between two quantum chaotic syste
The Maldacena-Qi model describes two copies of the Sachdev-Ye-Kitaev model coupled with an additional coupling, and is dual to the Jackiw-Teitelboim gravity which exhibits an eternal traversable wormhole in the low-temperature limit. In this work, we
The current interests in the universe motivate us to go beyond Einsteins General theory of relativity. One of the interesting proposals comes from a new class of teleparallel gravity named symmetric teleparallel gravity, i.e., $f(Q)$ gravity, where t
A pair of identical Sachdev-Ye-Kitaev (SYK) models with bilinear coupling forms a quantum dual of a traversable wormhole, with a ground state close to the so called thermofield double state. We use adiabaticity arguments and numerical simulations to
We study a traversable wormhole originated by a transformation over the 4D Dymnikova metric which describes analytic Black-Holes (BH). By using a transformation of coordinates which is adapted from the used in the Einstein-Rosen bridge, we study a sp