ﻻ يوجد ملخص باللغة العربية
We define and study the totally nonnegative part of the Chow quotient of the Grassmannian, or more simply the nonnegative configuration space. This space has a natural stratification by positive Chow cells, and we show that nonnegative configuration space is homeomorphic to a polytope as a stratified space. We establish bijections between positive Chow cells and the following sets: (a) regular subdivisions of the hypersimplex into positroid polytopes, (b) the set of cones in the positive tropical Grassmannian, and (c) the set of cones in the positive Dressian. Our work is motivated by connections to super Yang-Mills scattering amplitudes, which will be discussed in a sequel.
The well-known moment map maps the Grassmannian $Gr_{k+1,n}$ and the positive Grassmannian $Gr^+_{k+1,n}$ onto the hypersimplex $Delta_{k+1,n}$, which is a polytope of codimension $1$ inside $mathbb{R}^n$. Over the last decades there has been a great
Any totally positive $(k+m)times n$ matrix induces a map $pi_+$ from the positive Grassmannian ${rm Gr}_+(k,n)$ to the Grassmannian ${rm Gr}(k,k+m)$, whose image is the amplituhedron $mathcal{A}_{n,k,m}$ and is endowed with a top-degree form called t
We describe the possible noncommutative deformations of complex projective three-space by exhibiting the Calabi--Yau algebras that serve as their homogeneous coordinate rings. We prove that the space parametrizing such deformations has exactly six ir
In 1960, Hoffman and Singleton cite{HS60} solved a celebrated equation for square matrices of order $n$, which can be written as $$ (kappa - 1) I_n + J_n - A A^{rm T} = A$$ where $I_n$, $J_n$, and $A$ are the identity matrix, the all one matrix, and
Tight-spans of metrics were first introduced by Isbell in 1964 and rediscovered and studied by others, most notably by Dress, who gave them this name. Subsequently, it was found that tight-spans could be defined for more general maps, such as directe