ﻻ يوجد ملخص باللغة العربية
In this work, the normal density $rho_n$ and moment of inertia of a moving superfluid are investigated. We find that, even at zero temperature, there exists a finite normal density for the moving superfluid. When the velocity of superfluid reaches sound velocity, the normal density becomes total mass density $rho$, which indicates that the system losses superfluidity. At the same time, the Landaus critical velocity also becomes zero. The existence of the non-zero normal density is attributed to the coupling between the motion of superflow and density fluctuation in transverse directions. With Josephson relation, the superfluid density $rho_s$ is also calculated and the identity $rho_s+rho_n=rho$ holds. Further more, we find that the finite normal density also results in a quantized moment of inertia in a moving superfluid trapped by a ring. The normal density and moment of inertia at zero temperature could be verified experimentally by measuring the angular momentum of a moving superfluid in a ring trap.
We report on the observation of a quenched moment of inertia as resulting from superfluidity in a strongly interacting Fermi gas. Our method is based on setting the hydrodynamic gas in slow rotation and determining its angular momentum by detecting t
We discuss the superfluid properties of a Bose-Einstein condensed gas with spin-orbit coupling, recently realized in experiments. We find a finite normal fluid density $rho_n$ at zero temperature which turns out to be a function of the Raman coupling
We study the critical energy dissipation in an atomic superfluid gas with two symmetric spin components by an oscillating magnetic obstacle. Above a certain critical oscillation frequency, spin-wave excitations are generated by the magnetic obstacle,
We develop the variational and correlated basis functions/parquet-diagram theory of strongly interacting normal and superfluid systems. The first part of this contribution is devoted to highlight the connections between the Euler equations for the Ja
We study a continuum model of the weakly interacting Bose gas in the presence of an external field with minima forming a triangular lattice. The second lowest band of the single-particle spectrum ($p$-band) has three minima at non-zero momenta. We co