ترغب بنشر مسار تعليمي؟ اضغط هنا

Detection of Echoes in PSR B1508+55 at frequencies below 100 MHz using the LWA1

110   0   0.0 ( 0 )
 نشر من قبل Karishma Bansal
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

PSR B1508+55 is known to have a single component profile above 300 MHz. However, when we study it at frequencies below 100 MHz using the first station of the Long Wavelength Array, it shows multiple components. These include the main pulse, a precursor, a postcursor, and a trailing component. The separation of the trailing component from the main peak evolves over the course of a three year study. This evolution is likely an effect of the pulse signal getting refracted off an ionized gas cloud (acting as a lens) leading to what appears to be a trailing component in the profile as the pulsar signal traverses the interstellar medium. Using this interpretation, we identify the location and electron density of the lens affecting the pulse profile.



قيم البحث

اقرأ أيضاً

We observed the flare stars AD Leonis, Wolf 424, EQ Pegasi, EV Lacertae, and UV Ceti for nearly 135 hours. These stars were observed between 63 and 83 MHz using the interferometry mode of the Long Wavelength Array. Given that emission from flare star s is typically circularly polarized, we used the condition that any significant detection present in Stokes I must also be present in Stokes V at the same time in order for us to consider it a possible flare. Following this, we made one marginal flare detection for the star EQ Pegasi. This flare had a flux density of 5.91 Jy in Stokes I and 5.13 Jy in Stokes V, corresponding to a brightness temperature $1.75 times 10^{16}(r/r_*)^{-2}$ K.
We report on the simultaneous Giant Metrewave Radio Telescope (GMRT) and Algonquin Radio Observatory (ARO) observations at 550-750 MHz of the scintillation of PSR B1508+55, resulting in a $sim$10,000-km baseline. This regime of measurement lies betwe en the shorter few 100-1000~km baselines of earlier multi-station observations and the much longer earth-space baselines. We measure a scintillation cross-correlation coefficient of $0.22$, offset from zero time lag due to a $sim 45$~s traversal time of the scintillation pattern. The scintillation time of 135~s is $3times$ longer, ruling out isotropic as well as strictly 1D scattering. Hence, the low cross-correlation coefficient is indicative of highly anisotropic but 2D scattering. The common scintillation detected on the baseline is confined to low delays of $lesssim 1 mu$s, suggesting that this correlation may not be associated with the parabolic scintillation arc detected at the GMRT. Detection of pulsed echoes and their direct imaging with the Low Frequency Array (LOFAR) by a different group enable them to measure a distance of 125~pc to the screen causing these echoes. These previous measurements, alongside our observations, lead us to propose that there are at least two scattering screens: the closer 125 pc screen causing the scintillation arc detected at GMRT, and a screen further beyond causing the scintillation detected on the GMRT-ARO baseline. We advance the hypothesis that the 125-pc screen partially resolves the speckle images on the screen beyond leading to loss of coherence in the scintillation dynamic spectrum, to explain the low cross-correlation coefficient.
The recent detection of the cosmic dawn redshifted 21 cm signal at 78 MHz by the EDGES experiment differs significantly from theoretical predictions. In particular, the absorption trough is roughly a factor of two stronger than the most optimistic th eoretical models. The early interpretations of the origin of this discrepancy fall into two categories. The first is that there is increased cooling of the gas due to interactions with dark matter, while the second is that the background radiation field includes a contribution from a component in addition to the cosmic microwave background. In this paper we examine the feasibility of the second idea using new data from the first station of the Long Wavelength Array. The data span 40 to 80 MHz and provide important constraints on the present-day background in a frequency range where there are few surveys with absolute temperature calibration suitable for measuring the strength of the radio monopole. We find support for a strong, diffuse radio background that was suggested by the ARCARDE 2 results in the 3 to 10 GHz range. We find that this background is well modeled by a power law with a spectral index of $-$2.58$pm$0.05 and a temperature at the rest frame 21 cm frequency of 603$^{+102}_{-92}$ mK.
We present flux density measurements and pulse profiles for the millisecond pulsar PSR J2145-0750 spanning 37 to 81 MHz using data obtained from the first station of the Long Wavelength Array. These measurements represent the lowest frequency detecti on of pulsed emission from a millisecond pulsar to date. We find that the pulse profile is similar to that observed at 102 MHz. We also find that the flux density spectrum between ~40 MHz to 5 GHz is suggestive of a break and may be better fit by a model that includes spectral curvature with a rollover around 730 MHz rather than a single power law.
One of the major challenges for pulsar timing array (PTA) experiments is the mitigation of the effects of the turbulent interstellar medium (ISM) from timing data. These can potentially lead to measurable delays and/or distortions in the pulse profil es and scale strongly with the inverse of the radio frequency. Low-frequency observations are therefore highly appealing for characterizing them. However, in order to achieve the necessary time resolution to resolve profile features of short-period millisecond pulsars, phase-coherent de-dispersion is essential, especially at frequencies below $300$ MHz. We present the lowest-frequency ($80$-$220$ MHz), coherently de-dispersed detections of one of the most promising pulsars for current and future PTAs, PSR J2241$-$5236, using our new beam-former software for the MWAs voltage capture system (VCS), which reconstructs the time series at a much higher time resolution of $sim 1 mu$s by re-synthesizing the recorded voltage data at $10$-kHz/$100$-$mu$s native resolutions. Our data reveal a dual-precursor type feature in the pulse profile that is either faint or absent in high-frequency observations from Parkes. The resultant high-fidelity detections have enabled dispersion measure (DM) determinations with very high precision, of the order of $(2$-$6)times10^{-6}$ $rm pc,cm^{-3}$, owing to the microsecond level timing achievable for this pulsar at the MWAs low frequencies. This underscores the usefulness of low-frequency observations for probing the ISM toward PTA pulsars and informing optimal observing strategies for PTA experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا