ﻻ يوجد ملخص باللغة العربية
PSR B1508+55 is known to have a single component profile above 300 MHz. However, when we study it at frequencies below 100 MHz using the first station of the Long Wavelength Array, it shows multiple components. These include the main pulse, a precursor, a postcursor, and a trailing component. The separation of the trailing component from the main peak evolves over the course of a three year study. This evolution is likely an effect of the pulse signal getting refracted off an ionized gas cloud (acting as a lens) leading to what appears to be a trailing component in the profile as the pulsar signal traverses the interstellar medium. Using this interpretation, we identify the location and electron density of the lens affecting the pulse profile.
We observed the flare stars AD Leonis, Wolf 424, EQ Pegasi, EV Lacertae, and UV Ceti for nearly 135 hours. These stars were observed between 63 and 83 MHz using the interferometry mode of the Long Wavelength Array. Given that emission from flare star
We report on the simultaneous Giant Metrewave Radio Telescope (GMRT) and Algonquin Radio Observatory (ARO) observations at 550-750 MHz of the scintillation of PSR B1508+55, resulting in a $sim$10,000-km baseline. This regime of measurement lies betwe
The recent detection of the cosmic dawn redshifted 21 cm signal at 78 MHz by the EDGES experiment differs significantly from theoretical predictions. In particular, the absorption trough is roughly a factor of two stronger than the most optimistic th
We present flux density measurements and pulse profiles for the millisecond pulsar PSR J2145-0750 spanning 37 to 81 MHz using data obtained from the first station of the Long Wavelength Array. These measurements represent the lowest frequency detecti
One of the major challenges for pulsar timing array (PTA) experiments is the mitigation of the effects of the turbulent interstellar medium (ISM) from timing data. These can potentially lead to measurable delays and/or distortions in the pulse profil