ﻻ يوجد ملخص باللغة العربية
For an ordinal $alpha$, $sf PEA_{alpha}$ denotes the class of polyadic equality algebras of dimension $alpha$. We show that for several classes of algebras that are reducts of $PEA_{omega}$ whose signature contains all substitutions and finite cylindrifiers, if $B$ is in such a class, and $B$ is atomic, then for all $n<omega$, $Nr_nB$ is completely representable as a $PEA_n$. Conversely, we show that for any $2<n<omega$, and any variety $sf V$, between diagonal free cylindric algebras and quasipolyadic equality algebras of dimension $n$, the class of completely representable algebras in $sf V$ is not elementary.
Let $2<n<mleq omega$. Let $CA_n$ denote the class of cylindric algebras of dimension $n$ and $RCA_n$ denote the class of representable $CA_n$s. We say that $Ain RCA_n$ is representable up to $m$ if $CmAtA$ has an $m$-square representation. An $m$ squ
We take a long magical tour in algebraic logic, starting from classical results on neat embeddings due to Henkin, Monk and Tarski, all the way to recent results in algebraic logic using so--called rainbow constructions invented by Hirsch and Hodkinso
We prove that rationally essential manifolds with suitably large fundamental groups do not admit any maps of non-zero degree from products of closed manifolds of positive dimension. Particular examples include all manifolds of non-positive sectional
Let $R$ be a commutative ring. We investigate $R$-modules which can be written as emph{finite} sums of {it {second}} $R$-submodules (we call them emph{second representable}). We provide sufficient conditions for an $R$-module $M$ to be have a (minima
Comets are primitive objects that formed in the protoplanetary disk, and have been largely preserved over the history of the Solar System. However, they are not pristine, and surfaces of cometary nuclei do evolve. In order to understand the extent of