Rectifying semiconductor junctions are crucial to electronic devices. They convert alternating current into direct one by allowing unidirectional charge flows. In analogy to the current-flow rectification for itinerary electrons, here, a polar rectification that based on the localized oxygen vacancies (OVs) in a Ti/fatigued-SrTiO3 (fSTO) Schottky junction is first demonstrated. The fSTO with OVs is produced by an electro-degradation process. The different movability of localized OVs and itinerary electrons in the fSTO yield a unidirectional electric polarization at the interface of the junction under the coaction of external and built-in electric fields. Moreover, the fSTO displays a pre-ferroelectric state located between paraelectric and ferroelectric phases. The pre-ferroelectric state has three sub-states and can be easily driven into a ferroelectric state by external electric field. These observations open up opportunities for potential polar devices and may underpin many useful polar-triggered electronic phenomena.