ترغب بنشر مسار تعليمي؟ اضغط هنا

Finding online neural update rules by learning to remember

72   0   0.0 ( 0 )
 نشر من قبل Karol Gregor
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Karol Gregor




اسأل ChatGPT حول البحث

We investigate learning of the online local update rules for neural activations (bodies) and weights (synapses) from scratch. We represent the states of each weight and activation by small vectors, and parameterize their updates using (meta-) neural networks. Different neuron types are represented by different embedding vectors which allows the same two functions to be used for all neurons. Instead of training directly for the objective using evolution or long term back-propagation, as is commonly done in similar systems, we motivate and study a different objective: That of remembering past snippets of experience. We explain how this objective relates to standard back-propagation training and other forms of learning. We train for this objective using short term back-propagation and analyze the performance as a function of both the different network types and the difficulty of the problem. We find that this analysis gives interesting insights onto what constitutes a learning rule. We also discuss how such system could form a natural substrate for addressing topics such as episodic memories, meta-learning and auxiliary objectives.



قيم البحث

اقرأ أيضاً

In this paper, we introduce a new type of generalized neural network where neurons and synapses maintain multiple states. We show that classical gradient-based backpropagation in neural networks can be seen as a special case of a two-state network wh ere one state is used for activations and another for gradients, with update rules derived from the chain rule. In our generalized framework, networks have neither explicit notion of nor ever receive gradients. The synapses and neurons are updated using a bidirectional Hebb-style update rule parameterized by a shared low-dimensional genome. We show that such genomes can be meta-learned from scratch, using either conventional optimization techniques, or evolutionary strategies, such as CMA-ES. Resulting update rules generalize to unseen tasks and train faster than gradient descent based optimizers for several standard computer vision and synthetic tasks.
Recent studies on catastrophic forgetting during sequential learning typically focus on fixing the accuracy of the predictions for a previously learned task. In this paper we argue that the outputs of neural networks are subject to rapid changes when learning a new data distribution, and networks that appear to forget everything still contain useful representation towards previous tasks. Instead of enforcing the output accuracy to stay the same, we propose to reduce the effect of catastrophic forgetting on the representation level, as the output layer can be quickly recovered later with a small number of examples. Towards this goal, we propose an experimental setup that measures the amount of representational forgetting, and develop a novel meta-learning algorithm to overcome this issue. The proposed meta-learner produces weight updates of a sequential learning network, mimicking a multi-task teacher networks representation. We show that our meta-learner can improve its learned representations on new tasks, while maintaining a good representation for old tasks.
Deep Neural Networks (DNNs) have emerged as a powerful mechanism and are being increasingly deployed in real-world safety-critical domains. Despite the widespread success, their complex architecture makes proving any formal guarantees about them diff icult. Identifying how logical notions of high-level correctness relate to the complex low-level network architecture is a significant challenge. In this project, we extend the ideas presented in and introduce a way to bridge the gap between the architecture and the high-level specifications. Our key insight is that instead of directly proving the safety properties that are required, we first prove properties that relate closely to the structure of the neural net and use them to reason about the safety properties. We build theoretical foundations for our approach, and empirically evaluate the performance through various experiments, achieving promising results than the existing approach by identifying a larger region of input space that guarantees a certain property on the output.
105 - Sirisha Rambhatla , Xingguo Li , 2019
We consider the dictionary learning problem, where the aim is to model the given data as a linear combination of a few columns of a matrix known as a dictionary, where the sparse weights forming the linear combination are known as coefficients. Since the dictionary and coefficients, parameterizing the linear model are unknown, the corresponding optimization is inherently non-convex. This was a major challenge until recently, when provable algorithms for dictionary learning were proposed. Yet, these provide guarantees only on the recovery of the dictionary, without explicit recovery guarantees on the coefficients. Moreover, any estimation error in the dictionary adversely impacts the ability to successfully localize and estimate the coefficients. This potentially limits the utility of existing provable dictionary learning methods in applications where coefficient recovery is of interest. To this end, we develop NOODL: a simple Neurally plausible alternating Optimization-based Online Dictionary Learning algorithm, which recovers both the dictionary and coefficients exactly at a geometric rate, when initialized appropriately. Our algorithm, NOODL, is also scalable and amenable for large scale distributed implementations in neural architectures, by which we mean that it only involves simple linear and non-linear operations. Finally, we corroborate these theoretical results via experimental evaluation of the proposed algorithm with the current state-of-the-art techniques. Keywords: dictionary learning, provable dictionary learning, online dictionary learning, non-convex, sparse coding, support recovery, iterative hard thresholding, matrix factorization, neural architectures, neural networks, noodl, sparse representations, sparse signal processing.
Recently, neuro-inspired episodic control (EC) methods have been developed to overcome the data-inefficiency of standard deep reinforcement learning approaches. Using non-/semi-parametric models to estimate the value function, they learn rapidly, ret rieving cached values from similar past states. In realistic scenarios, with limited resources and noisy data, maintaining meaningful representations in memory is essential to speed up the learning and avoid catastrophic forgetting. Unfortunately, EC methods have a large space and time complexity. We investigate different solutions to these problems based on prioritising and ranking stored states, as well as online clustering techniques. We also propose a new dynamic online k-means algorithm that is both computationally-efficient and yields significantly better performance at smaller memory sizes; we validate this approach on classic reinforcement learning environments and Atari games.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا