ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraining the gravitational coupling of axion dark matter at LIGO

92   0   0.0 ( 0 )
 نشر من قبل TaeHun Kim
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The axion-gravity Chern-Simons coupling is well motivated but is relatively weakly constrained, partly due to difficult measurements of gravity. We study the sensitivity of LIGO measurements of chirping gravitational waves (GWs) on such coupling. When the frequency of the propagating GW matches with that of the coherent oscillation of axion dark matter field, the decay of axions into gravitons can be stimulated, resonantly enhancing the GW. Such a resonance peak can be detected at LIGO as a deviation from the chirping waveform. Since all observed GWs will undergo similar resonant enhancement from the Milky-Way (MW) axion halo, LIGO O1+O2 observations can potentially provide the strongest constraint on the coupling, at least for the axion mass $m_a = 5 times 10^{-13} - 5 times 10^{-12}$ eV. Along the course, we also emphasize the relevance of the finite coherence of axion fields and the ansatz separating forward and backward propagations of GWs. As a result, the parity violation of the Chern-Simons coupling is not observable from chirping GWs.



قيم البحث

اقرأ أيضاً

Since the current evidence of its existence is revealed only through its gravitational influence, the way dark matter couples to gravity must be then of primary importance. Here, unlike the standard model sector which is typically coupled to metric, dark matter is supposed to couple only to spacetime affine connection through a $Z_2$-symmetry breaking term. We show that this structure leads to a coupling between dark matter, which is considered scalar, and the standard model Higgs potential. This induces dark matter decays into standard model particles through the Higgs which acts as a portal between the visible and the dark sectors. We study thoroughly the resulting decay modes for various mass ranges, and provide relevant bounds on the nonminimal coupling to affine gravity in line with observational data. Moreover, we find that the coupling to Higgs can be sufficiently large to facilitate production of dark matter lighter than 10 GeV at current and future high energy colliders.
We point out that stars in the mass window ~ 8-12 Msun can serve as sensitive probes of the axion-photon interaction, g_{Agammagamma}. Specifically, for these stars axion energy losses from the helium-burning core would shorten and eventually elimina te the blue loop phase of the evolution. This would contradict observational data, since the blue loops are required, e.g., to account for the existence of Cepheid stars. Using the MESA stellar evolution code, modified to include the extra cooling, we conservatively find g_{Agammagamma} <~ 0.8 * 10^{-10} GeV^{-1}, which compares favorably with the existing bounds.
In the event that R-Parity conserving supersymmetry (SUSY) is discovered at the LHC, a key issue which will need to be addressed will be the consistency of that signal with astrophysical and non-accelerator constraints on SUSY Dark Matter. This issue is studied for the SPA benchmark model based on measurements of end-points and thresholds in the invariant mass spectra of various combinations of leptons and jets. These measurements are used to constrain the soft SUSY breaking parameters at the electroweak scale in a general MSSM model. Based on these constraints, we assess the accuracy with which the Dark Matter relic density can be measured.
We show how observations of gravitational waves from binary neutron star (BNS) mergers over the next few years can be combined with insights from nuclear physics to obtain useful constraints on the equation of state (EoS) of dense matter, in particul ar, constraining the neutron-matter EoS to within 20% between one and two times the nuclear saturation density $n_0approx 0.16 {text{fm}^{-3}}$. Using Fisher information methods, we combine observational constraints from simulated BNS merger events drawn from various population models with independent measurements of the neutron star radii expected from x-ray astronomy (the Neutron Star Interior Composition Explorer (NICER) observations in particular) to directly constrain nuclear physics parameters. To parameterize the nuclear EoS, we use a different approach, expanding from pure nuclear matter rather than from symmetric nuclear matter to make use of recent quantum Monte Carlo (QMC) calculations. This method eschews the need to invoke the so-called parabolic approximation to extrapolate from symmetric nuclear matter, allowing us to directly constrain the neutron-matter EoS. Using a principal component analysis, we identify the combination of parameters most tightly constrained by observational data. We discuss sensitivity to various effects such as different component masses through population-model sensitivity, phase transitions in the core EoS, and large deviations from the central parameter values.
96 - Shu-Yu Ho , Kenichi Saikawa , 2018
We revisit the adiabatic conversion between the QCD axion and axion-like particle (ALP) at level crossing, which can occur in the early universe as a result of the existence of a hypothetical mass mixing. This is similar to the Mikheyev-Smirnov-Wolfe nstein effect in neutrino oscillations. After refining the conditions for the adiabatic conversion to occur, we focus on a scenario where the ALP produced by the adiabatic conversion of the QCD axion explains the observed dark matter abundance. Interestingly, we find that the ALP decay constant can be much smaller than the ordinary case in which the ALP is produced by the realignment mechanism. As a consequence, the ALP-photon coupling is enhanced by a few orders of magnitude, which is advantageous for the future ALP and axion-search experiments using the ALP-photon coupling.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا