ترغب بنشر مسار تعليمي؟ اضغط هنا

SketchyCOCO: Image Generation from Freehand Scene Sketches

319   0   0.0 ( 0 )
 نشر من قبل Qi Liu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce the first method for automatic image generation from scene-level freehand sketches. Our model allows for controllable image generation by specifying the synthesis goal via freehand sketches. The key contribution is an attribute vector bridged Generative Adversarial Network called EdgeGAN, which supports high visual-quality object-level image content generation without using freehand sketches as training data. We have built a large-scale composite dataset called SketchyCOCO to support and evaluate the solution. We validate our approach on the tasks of both object-level and scene-level image generation on SketchyCOCO. Through quantitative, qualitative results, human evaluation and ablation studies, we demonstrate the methods capacity to generate realistic complex scene-level images from various freehand sketches.



قيم البحث

اقرأ أيضاً

In this paper, we explore the task of generating photo-realistic face images from hand-drawn sketches. Existing image-to-image translation methods require a large-scale dataset of paired sketches and images for supervision. They typically utilize syn thesized edge maps of face images as training data. However, these synthesized edge maps strictly align with the edges of the corresponding face images, which limit their generalization ability to real hand-drawn sketches with vast stroke diversity. To address this problem, we propose DeepFacePencil, an effective tool that is able to generate photo-realistic face images from hand-drawn sketches, based on a novel dual generator image translation network during training. A novel spatial attention pooling (SAP) is designed to adaptively handle stroke distortions which are spatially varying to support various stroke styles and different levels of details. We conduct extensive experiments and the results demonstrate the superiority of our model over existing methods on both image quality and model generalization to hand-drawn sketches.
We contribute the first large-scale dataset of scene sketches, SketchyScene, with the goal of advancing research on sketch understanding at both the object and scene level. The dataset is created through a novel and carefully designed crowdsourcing p ipeline, enabling users to efficiently generate large quantities of realistic and diverse scene sketches. SketchyScene contains more than 29,000 scene-level sketches, 7,000+ pairs of scene templates and photos, and 11,000+ object sketches. All objects in the scene sketches have ground-truth semantic and instance masks. The dataset is also highly scalable and extensible, easily allowing augmenting and/or changing scene composition. We demonstrate the potential impact of SketchyScene by training new computational models for semantic segmentation of scene sketches and showing how the new dataset enables several applications including image retrieval, sketch colorization, editing, and captioning, etc. The dataset and code can be found at https://github.com/SketchyScene/SketchyScene.
There is a surge of interest in image scene graph generation (object, attribute and relationship detection) due to the need of building fine-grained image understanding models that go beyond object detection. Due to the lack of a good benchmark, the reported results of different scene graph generation models are not directly comparable, impeding the research progress. We have developed a much-needed scene graph generation benchmark based on the maskrcnn-benchmark and several popular models. This paper presents main features of our benchmark and a comprehensive ablation study of scene graph generation models using the Visual Genome and OpenImages Visual relationship detection datasets. Our codebase is made publicly available at https://github.com/microsoft/scene_graph_benchmark.
The significant progress on Generative Adversarial Networks (GANs) has facilitated realistic single-object image generation based on language input. However, complex-scene generation (with various interactions among multiple objects) still suffers fr om messy layouts and object distortions, due to diverse configurations in layouts and appearances. Prior methods are mostly object-driven and ignore their inter-relations that play a significant role in complex-scene images. This work explores relationship-aware complex-scene image generation, where multiple objects are inter-related as a scene graph. With the help of relationships, we propose three major updates in the generation framework. First, reasonable spatial layouts are inferred by jointly considering the semantics and relationships among objects. Compared to standard location regression, we show relative scales and distances serve a more reliable target. Second, since the relations between objects significantly influence an objects appearance, we design a relation-guided generator to generate objects reflecting their relationships. Third, a novel scene graph discriminator is proposed to guarantee the consistency between the generated image and the input scene graph. Our method tends to synthesize plausible layouts and objects, respecting the interplay of multiple objects in an image. Experimental results on Visual Genome and HICO-DET datasets show that our proposed method significantly outperforms prior arts in terms of IS and FID metrics. Based on our user study and visual inspection, our method is more effective in generating logical layout and appearance for complex-scenes.
Scene graph generation has received growing attention with the advancements in image understanding tasks such as object detection, attributes and relationship prediction,~etc. However, existing datasets are biased in terms of object and relationship labels, or often come with noisy and missing annotations, which makes the development of a reliable scene graph prediction model very challenging. In this paper, we propose a novel scene graph generation algorithm with external knowledge and image reconstruction loss to overcome these dataset issues. In particular, we extract commonsense knowledge from the external knowledge base to refine object and phrase features for improving generalizability in scene graph generation. To address the bias of noisy object annotations, we introduce an auxiliary image reconstruction path to regularize the scene graph generation network. Extensive experiments show that our framework can generate better scene graphs, achieving the state-of-the-art performance on two benchmark datasets: Visual Relationship Detection and Visual Genome datasets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا