ﻻ يوجد ملخص باللغة العربية
Trillions of network packets are sent over the Internet to destinations which do not exist. This darknet traffic captures the activity of botnets and other malicious campaigns aiming to discover and compromise devices around the world. In order to mine threat intelligence from this data, one must be able to handle large streams of logs and represent the traffic patterns in a meaningful way. However, by observing how network ports (services) are used, it is possible to capture the intent of each transmission. In this paper, we present DANTE: a framework and algorithm for mining darknet traffic. DANTE learns the meaning of targeted network ports by applying Word2Vec to observed port sequences. Then, when a host sends a new sequence, DANTE represents the transmission as the average embedding of the ports found that sequence. Finally, DANTE uses a novel and incremental time-series cluster tracking algorithm on observed sequences to detect recurring behaviors and new emerging threats. To evaluate the system, we ran DANTE on a full year of darknet traffic (over three Tera-Bytes) collected by the largest telecommunications provider in Europe, Deutsche Telekom and analyzed the results. DANTE discovered 1,177 new emerging threats and was able to track malicious campaigns over time. We also compared DANTE to the current best approach and found DANTE to be more practical and effective at detecting darknet traffic patterns.
In this paper, we present three datasets that have been built from network traffic traces using ASNM features, designed in our previous work. The first dataset was built using a state-of-the-art dataset called CDX 2009, while the remaining two datase
In recent years, the data mining techniques have met a serious challenge due to the increased concerning and worries of the privacy, that is, protecting the privacy of the critical and sensitive data. Different techniques and algorithms have been alr
The rapid development of IoT applications and their use in various fields of everyday life has resulted in an escalated number of different possible cyber-threats, and has consequently raised the need of securing IoT devices. Collecting Cyber-Threat
Machine learning-based malware detection is known to be vulnerable to adversarial evasion attacks. The state-of-the-art is that there are no effective defenses against these attacks. As a response to the adversarial malware classification challenge o
Mining is the important part of the blockchain used the proof of work (PoW) on its consensus, looking for the matching block through testing a number of hash calculations. In order to attract more hash computing power, the miner who finds the proper