ﻻ يوجد ملخص باللغة العربية
This is a tutorial aimed at illustrating some recent developments in quantum parameter estimation beyond the Cram`er-Rao bound, as well as their applications in quantum metrology. Our starting point is the observation that there are situations in classical and quantum metrology where the unknown parameter of interest, besides determining the state of the probe, is also influencing the operation of the measuring devices, e.g. the range of possible outcomes. In those cases, non-regular statistical models may appear, for which the Cram`er-Rao theorem does not hold. In turn, the achievable precision may exceed the Cram`er-Rao bound, opening new avenues for enhanced metrology. We focus on quantum estimation of Hamiltonian parameters and show that an achievable bound to precision (beyond the Cram`er-Rao) may be obtained in a closed form for the class of so-called controlled energy measurements. Examples of applications of the new bound to various estimation problems in quantum metrology are worked out in some details.
It is challenged only recently that the precision attainable in any measurement of a physical parameter is fundamentally limited by the quantum Cram{e}r-Rao Bound (QCRB). Here, targeting at measuring parameters in strongly dissipative systems, we pro
Many quantum statistical models are most conveniently formulated in terms of non-orthonormal bases. This is the case, for example, when mixtures and superpositions of coherent states are involved. In these instances, we show that the analytical evalu
We study how useful random states are for quantum metrology, i.e., surpass the classical limits imposed on precision in the canonical phase estimation scenario. First, we prove that random pure states drawn from the Hilbert space of distinguishable p
The main obstacle for practical quantum technology is the noise, which can induce the decoherence and destroy the potential quantum advantages. The fluctuation of a field, which induces the dephasing of the system, is one of the most common noises an
In multiparameter quantum metrology, the weighted-arithmetic-mean error of estimation is often used as a scalar cost function to be minimized during design optimization. However, other types of mean error can reveal different facets of permissible er