ترغب بنشر مسار تعليمي؟ اضغط هنا

Fundamental Properties of Metal-Adsorbed Silicene: A DFT Study

190   0   0.0 ( 0 )
 نشر من قبل Ngoc Thanh Thuy Tran
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Sodium, magnesium and aluminum adatoms, which, respectively, possess one, two and three valence electrons in terms of 3s, $3s^2$, and ($3s^2$, 3p) orbitals, are very suitable for helping us understand the adsorption-induced diverse phenomena. In this study, the revealing properties of metal (Na/Mg/Al)-adsorbed graphene systems are investigated by mean of the first-principles method. The single- and double-side chemisorption cases, the various adatom concentrations, the hollow/top/valley/bridge sites, and the buckled structures are taken into account. The hollow and valley adsorptions, which, respectively, correspond to the Na/Mg and Al cases, create the extremely non-uniform environments within the Moire superlattices. This lead to diverse orbital hybridizations in Na/Mg/Al-Si bonds, as indicated from the Na/Mg/Al-dominated bands, the spatial charge density distributions and the orbital-projected density of states (DOS). Among three kinds of metal-adatom adsorptions, the Al-adsorption configurations present the strongest chemical modifications. The ferromagnetic configurations are shown to only survive in the specific Mg- and Al-adsorptions, but not the Na-cases. The theoretical predictions could be validated by experimental measurements and the up-to-date potential applications are included. Furthermore, the important similarities and differences with the graphene-related systems are also discussed.



قيم البحث

اقرأ أيضاً

The revealing properties of transition metal (T)-doped graphene systems are investigated with the use of the first-principles method. The detailed calculations cover the bond length, position and height of adatoms, binding energy, atom-dominated band structure, adatom-induced free carrier density as well as energy gap, spin-density distributions, spatial charge distribution, and atom-, orbital- and spin-projected density-of-states (DOS). The magnetic configurations are clearly identified from the total magnetic moments, spin-split energy bands, spin-density distributions and spin-decomposed DOS. Moreover, the single- or multi-orbital hybridizations in T-C, T-T, and C-C bonds can be accurately deduced from the careful analyses of the above-mentioned physical quantities. They are responsible for the optimal geometric structure, the unusual electronic properties, as well as the diverse magnetic properties. All the doped systems are metals except for the low-concentration Ni-doped ones with semiconducting behavior. In contrast, ferromagnetism is exhibited in various Fe/Co-concentrations but only under high Ni-concentrations. Our theoretical predictions are compared with available experimental data, and potential applications are also discussed.
214 - A. Mugarza , R. Robles , C. Krull 2012
We present a systematic investigation of molecule-metal interactions for transition-metal phthalocyanines (TMPc, with TM = Fe, Co, Ni, Cu) adsorbed on Ag(100). Scanning tunneling spectroscopy and density functional theory provide insight into the cha rge transfer and hybridization mechanisms of TMPc as a function of increasing occupancy of the 3d metal states. We show that all four TMPc receive approximately one electron from the substrate. Charge transfer occurs from the substrate to the molecules, inducing a charge reorganization in FePc and CoPc, while adding one electron to ligand pi-orbitals in NiPc and CuPc. This has opposite consequences on the molecular magnetic moment: in FePc and CoPc the interaction with the substrate tends to reduce the TM spin, whereas in NiPc and CuPc an additional spin is induced on the aromatic Pc ligand, leaving the TM spin unperturbed. In CuPc, the presence of both TM and ligand spins leads to a triplet ground state arising from intramolecular exchange coupling between d and pi electrons. In FePc and CoPc the magnetic moment of C and N atoms is antiparallel to that of the TM. The different character and symmetry of the frontier orbitals in the TMPc series leads to varying degrees of hybridization and correlation effects, ranging from the mixed-valence (FePc, CoPc) to the Kondo regime (NiPc, CuPc). Coherent coupling between Kondo and inelastic excitations induces finite-bias Kondo resonances involving vibrational transitions in both NiPc and CuPc and triplet-singlet transitions in CuPc.
Silicene is a promising 2D Dirac material as a building block for van der Waals heterostructures (vdWHs). Here we investigate the electronic properties of hexagonal boron nitride/silicene (BN/Si) vdWHs using first-principles calculations. We calculat e the energy band structures of BN/Si/BN heterostructures with different rotation angles and find that the electronic properties of silicene are retained and protected robustly by the BN layers. In BN/Si/BN/Si/BN heterostructure, we find that the band structure near the Fermi energy is sensitive to the stacking configurations of the silicene layers due to interlayer coupling. The coupling is reduced by increasing the number of BN layers between the silicene layers and becomes negligible in BN/Si/(BN)3/Si/BN. In (BN)n/Si superlattices, the band structure undergoes a conversion from Dirac lines to Dirac points by increasing the number of BN layers between the silicene layers. Calculations of silicene sandwiched by other 2D materials reveal that silicene sandwiched by low-carbon-doped boron nitride or HfO2 is semiconducting.
It has been demonstrated in previous experimental and computational work that doping CeO2 with transition metals is an effective way of tuning its properties. However, each previous study on CeO2 doping has been limited to a single or a few dopants. In this paper, we systematically study the formation energies, structural stability and electronic properties of CeO2 doped with the entire range of the ten 3d transition metals using density functional theory (DFT) calculations at the hybrid level. The formation energies of oxygen vacancies, and their effects on electronic properties, were also considered. It is found that most of the 3d transition metal dopants can lower the band gap of CeO2, with V and Co doping significantly reducing the band gap to less than 2.0 eV. Furthermore, all of the dopants can lower the formation energy of oxygen vacancies, and those with higher atomic numbers, particularly Cu and Zn, are most effective for this purpose. The electronic structures of doped CeO2 compensated by oxygen vacancies show that the presence of oxygen vacancies can further lower the band gap for most of the dopants, with V-, Cr-, Fe-, Co-, Ni-, and Cu-doped CeO2 all having band gaps of less than 2.0 eV. These results suggest that doping CeO2 with 3d transition metals could enhance the photocatalytic performance under visible light and increase the oxygen vacancy concentration, and they could provide a meaningful guide for the design of CeO2-based materials with improved photocatalytic and catalytic performance as well as enhanced ionic conductivity.
We discuss the structural and electronic properties of tetragonal CuO grown on SrTiO3(100) by means of hybrid density functional theory. Our analysis explains the anomalously large Cu-O vertical distance observed in the experiments (~2.7 A) in terms of a peculiar frustration between two competing local Cu-O environments characterized by different in-plane and out-of-plane bond lengths and Cu electronic populations. The proper inclusion of substrate effects is crucial to understand the tetragonal expansion and to reproduce correctly the measured valence band spectrum for a CuO thickness of 3-3.5 unit cells, in agreement with the experimentally estimated thickness.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا