ترغب بنشر مسار تعليمي؟ اضغط هنا

Remote Quantum Sensing with Heisenberg Limited Sensitivity in Many Body Systems

64   0   0.0 ( 0 )
 نشر من قبل Gareth Jones
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum sensors have been shown to be superior to their classical counterparts in terms of resource efficiency. Such sensors have traditionally used the time evolution of special forms of initially entangled states, adaptive measurement basis change, or the ground state of many-body systems tuned to criticality. Here, we propose a different way of doing quantum sensing which exploits the dynamics of a many-body system, initialized in a product state, along with a sequence of projective measurements in a specific basis. The procedure has multiple practical advantages as it: (i) enables remote quantum sensing, protecting a sample from the potentially invasive readout apparatus; and (ii) simplifies initialization by avoiding complex entangled or critical ground states. From a fundamental perspective, it harnesses a resource so far unexploited for sensing, namely, the residual information from the unobserved part of the many-body system after the wave-function collapses accompanying the measurements. By increasing the number of measurement sequences, through the means of a Bayesian estimator, precision beyond the standard limit, approaching the Heisenberg bound, is shown to be achievable.



قيم البحث

اقرأ أيضاً

Coupling a quantum many-body system to an external environment dramatically changes its dynamics and offers novel possibilities not found in closed systems. Of special interest are the properties of the steady state of such open quantum many-body sys tems, as well as the relaxation dynamics towards the steady state. However, new computational tools are required to simulate open quantum many-body systems, as methods developed for closed systems cannot be readily applied. We review several approaches to simulate open many-body systems and point out the advances made in recent years towards the simulation of large system sizes.
Ground state criticality of many-body systems is a resource for quantum enhanced sensing, namely Heisenberg precision limit, provided that one has access to the whole system. We show that for partial accessibility the sensing capacity of a block in t he ground state reduces to sub-Heisenberg limit. To compensate for this, we drive the system periodically and use the local steady state for quantum sensing. Remarkably, the steady state sensing shows a significant enhancement in its precision in comparison with the ground state and even shows super-Heisenberg scaling for a certain range of frequencies. The origin of this precision enhancement is found to be the closing of the Floquet gap. This is in close correspondence with the role of the vanishing energy gap at criticality for quantum enhanced ground state sensing with global accessibility.
We present a framework to control and track the observables of a general solid state system driven by an incident laser field. The main result is a non-linear equation of motion for tracking an observable, together with a constraint on the size of ex pectations which may be reproduced via tracking. Among other applications, this model provides a potential route to the design of laser fields which cause photo-induced superconductivity in materials above their critical temperature. As a first test, the strategy is used to make the expectation value of the current conform to an arbitrary function under a range of model parameters. Additionally, using two reference spectra for materials in the conducting and insulating regimes respectively, the tracking algorithm is used to make each material mimic the optical spectrum of the other.
We study the spectral statistics of spatially-extended many-body quantum systems with on-site Abelian symmetries or local constraints, focusing primarily on those with conserved dipole and higher moments. In the limit of large local Hilbert space dim ension, we find that the spectral form factor $K(t)$ of Floquet random circuits can be mapped exactly to a classical Markov circuit, and, at late times, is related to the partition function of a frustration-free Rokhsar-Kivelson (RK) type Hamiltonian. Through this mapping, we show that the inverse of the spectral gap of the RK-Hamiltonian lower bounds the Thouless time $t_{mathrm{Th}}$ of the underlying circuit. For systems with conserved higher moments, we derive a field theory for the corresponding RK-Hamiltonian by proposing a generalized height field representation for the Hilbert space of the effective spin chain. Using the field theory formulation, we obtain the dispersion of the low-lying excitations of the RK-Hamiltonian in the continuum limit, which allows us to extract $t_{mathrm{Th}}$. In particular, we analytically argue that in a system of length $L$ that conserves the $m^{th}$ multipole moment, $t_{mathrm{Th}}$ scales subdiffusively as $L^{2(m+1)}$. We also show that our formalism directly generalizes to higher dimensional circuits, and that in systems that conserve any component of the $m^{th}$ multipole moment, $t_{mathrm{Th}}$ has the same scaling with the linear size of the system. Our work therefore provides a general approach for studying spectral statistics in constrained many-body chaotic systems.
Controlling non-equilibrium quantum dynamics in many-body systems is an outstanding challenge as interactions typically lead to thermalization and a chaotic spreading throughout Hilbert space. We experimentally investigate non-equilibrium dynamics fo llowing rapid quenches in a many-body system composed of 3 to 200 strongly interacting qubits in one and two spatial dimensions. Using a programmable quantum simulator based on Rydberg atom arrays, we probe coherent revivals corresponding to quantum many-body scars. Remarkably, we discover that scar revivals can be stabilized by periodic driving, which generates a robust subharmonic response akin to discrete time-crystalline order. We map Hilbert space dynamics, geometry dependence, phase diagrams, and system-size dependence of this emergent phenomenon, demonstrating novel ways to steer entanglement dynamics in many-body systems and enabling potential applications in quantum information science.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا