Complete characterization of a noisy multipartite quantum state in terms of entanglement requires full knowledge of how the entanglement content in the state is affected by the spatial distribution of noise in the state. Specifically, we find that if the measurement-basis in the protocol of computing localizable entanglement and the basis of the Kraus operator representing the local noisy channel do not commute, the information regarding the noise is retained in the system even after the qubit is traced out after measurement. Using this result and the basic properties of entanglement under noise, we present a set of hierarchies that localizable entanglement over a specific subsystem in a multiqubit state can obey when local noise acts on the subparts or on all the qubits of the whole system. In particular, we propose two types of hierarchies -- one tailored according to the number of noisy unmeasured qubits, and the other one that depends additionally on the cardinality of the set of noisy measured qubits, leading to the classification of quantum states. We report the percentage of states satisfying the proposed hierarchies in the case of random three- and four-qubit systems and show, using both analytical methods and numerical simulations, that in almost all the cases, anticipated hierarchies tend to hold with the variation of the strength of noise.