ترغب بنشر مسار تعليمي؟ اضغط هنا

Strong Structural Controllability of Colored Structured Systems

100   0   0.0 ( 0 )
 نشر من قبل Jiajia Jia
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper deals with strong structural controllability of linear structured systems in which the system matrices are given by zero/nonzero/arbitrary pattern matrices. Instead of assuming that the nonzero and arbitrary entries of the system matrices can take their values completely independently, this paper allows equality constraints on these entries, in the sense that {em a priori} given entries in the system matrices are restricted to take arbitrary but identical values. To formalize this general class of structured systems, we introduce the concepts of colored pattern matrices and colored structured systems. The main contribution of this paper is that it generalizes both the classical results on strong structural controllability of structured systems as well as recent results on controllability of systems defined on colored graphs. In this paper, we will establish both algebraic and graph-theoretic conditions for strong structural controllability of this more general class of structured systems.



قيم البحث

اقرأ أيضاً

169 - Yuan Zhang , Yuanqing Xia 2021
In linear control theory, a structured system is a system whose entries of its system matrices are either fixed zero or indeterminate. This system is structurally controllable, if there exists a realization of it that is controllable, and is strongly structurally controllable (SSC), if for any nonzero values of the indeterminate entries, the corresponding system is controllable. This paper introduces a new controllability notion, termed partial strong structural controllability (PSSC), which naturally extends SSC and bridges the gap between structural controllability and SSC. Dividing the indeterminate entries into two categories, generic entries and unspecified entries, a system is PSSC, if for almost all values of the generic entries in the parameter space except for a set of measure zero, and any nonzero (complex) values of the unspecified entries, the corresponding system is controllable. We highlight that this notion generalizes the generic property embedded in the conventional structural controllability for single-input systems. We then give algebraic and (bipartite) graph-theoretic necessary and sufficient conditions for single-input systems to be PSSC. Conditions for multi-input systems are subsequently given for a particular case. We also extend our results to the case where the unspecified entries can take either nonzero values or zero/nonzero values. Finally, we show the established results can induce a new graph-theoretic criterion for SSC in maximum matchings over the system bipartite graph representations.
125 - Xing Wang , Bo Li , Jr-Shin Li 2021
In this paper, we study graphical conditions for structural controllability and accessibility of drifted bilinear systems over Lie groups. We consider a bilinear control system with drift and controlled terms that evolves over the special orthogonal group, the general linear group, and the special unitary group. Zero patterns are prescribed for the drift and controlled dynamics with respect to a set of base elements in the corresponding Lie algebra. The drift dynamics must respect a rigid zero-pattern in the sense that the drift takes values as a linear combination of base elements with strictly non-zero coefficients; the controlled dynamics are allowed to follow a free zero pattern with potentially zero coefficients in the configuration of the controlled term by linear combination of the controlled base elements. First of all, for such bilinear systems over the special orthogonal group or the special unitary group, the zero patterns are shown to be associated with two undirected or directed graphs whose connectivity and connected components ensure structural controllability/accessibility. Next, for bilinear systems over the special unitary group, we introduce two edge-colored graphs associated with the drift and controlled zero patterns, and prove structural controllability conditions related to connectivity and the number of edges of a particular color.
This paper studies the controllability of networked multi-input-multi-output (MIMO) systems, in which the network topology is weighted and directed, and the nodes are heterogeneous higher-dimensional linear time-invariant (LTI) dynamical systems. The primary objective is to search for controllability criteria beyond those already known for homogeneous networks. The focus is on the effects of the network topology, node dynamics, external control inputs, as well as the inner interactions on the network controllability. It is found that a network of heterogeneous systems can be controllable even if the corresponding homogeneous network topology is uncontrollable. The finding thus unravels another fundamental property that affects the network controllability---the heterogeneity of the node dynamics. A necessary and sufficient condition is derived for the controllability of heterogeneous networked MIMO LTI systems. For some typical cases, necessary and/or sufficient controllability conditions are specified and presented on the node dynamics, inner interactions, as well as the network topology.
In this paper we present necessary and sufficient conditions to guarantee the existence of invariant cones, for semigroup actions, in the space of the $k$-fold exterior product. As consequence we establish a necessary and sufficient condition for con trollability of a class of bilinear control systems.
86 - Gong Cheng , Wei Zhang , 2020
The control of bilinear systems has attracted considerable attention in the field of systems and control for decades, owing to their prevalence in diverse applications across science and engineering disciplines. Although much work has been conducted on analyzing controllability properties, the mostly used tool remains the Lie algebra rank condition. In this paper, we develop alternative approaches based on theory and techniques in combinatorics to study controllability of bilinear systems. The core idea of our methodology is to represent vector fields of a bilinear system by permutations or graphs, so that Lie brackets are represented by permutation multiplications or graph operations, respectively. Following these representations, we derive combinatorial characterization of controllability for bilinear systems, which consequently provides novel applications of symmetric group and graph theory to control theory. Moreover, the developed combinatorial approaches are compatible with Lie algebra decompositions, including the Cartan and non-intertwining decomposition. This compatibility enables the exploitation of representation theory for analyzing controllability, which allows us to characterize controllability properties of bilinear systems governed by semisimple and reductive Lie algebras.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا