ﻻ يوجد ملخص باللغة العربية
This paper introduces VESR-Net, a method for video enhancement and super-resolution (VESR). We design a separate non-local module to explore the relations among video frames and fuse video frames efficiently, and a channel attention residual block to capture the relations among feature maps for video frame reconstruction in VESR-Net. We conduct experiments to analyze the effectiveness of these designs in VESR-Net, which demonstrates the advantages of VESR-Net over previous state-of-the-art VESR methods. It is worth to mention that among more than thousands of participants for Youku video enhancement and super-resolution (Youku-VESR) challenge, our proposed VESR-Net beat other competitive methods and ranked the first place.
Super-Resolution (SR) is a fundamental computer vision task that aims to obtain a high-resolution clean image from the given low-resolution counterpart. This paper reviews the NTIRE 2021 Challenge on Video Super-Resolution. We present evaluation resu
Generative deep learning has sparked a new wave of Super-Resolution (SR) algorithms that enhance single images with impressive aesthetic results, albeit with imaginary details. Multi-frame Super-Resolution (MFSR) offers a more grounded approach to th
This paper reviews the video extreme super-resolution challenge associated with the AIM 2020 workshop at ECCV 2020. Common scaling factors for learned video super-resolution (VSR) do not go beyond factor 4. Missing information can be restored well in
Classic image scaling (e.g. bicubic) can be seen as one convolutional layer and a single upscaling filter. Its implementation is ubiquitous in all display devices and image processing software. In the last decade deep learning systems have been intro
Video super-resolution (VSR), with the aim to restore a high-resolution video from its corresponding low-resolution version, is a spatial-temporal sequence prediction problem. Recently, Transformer has been gaining popularity due to its parallel comp