ترغب بنشر مسار تعليمي؟ اضغط هنا

Tailoring the opto-electronic response of graphene nanoflakes by size and shape optimization

97   0   0.0 ( 0 )
 نشر من قبل Raquel Esteban-Puyuelo
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The long spin-diffusion length, spin-lifetimes and excellent optical absorption coefficient of graphene provide an excellent platform for building opto-electronic devices as well as spin-based logic in a nanometer regime. In this study, by employing density functional theory and its time-dependent version, we provide a detailed analysis of how the size and shape of graphene nanoflakes can be used to alter their magnetic structure and optical properties. As the edges of zigzag graphene nanoribbons are known to align anti-ferromagnetically and armchair nanoribbons are typically non-magnetic, a combination of both in a nanoflake geometry can be used to optimize the ground-state magnetic structure and tailor the exchange coupling decisive for ferro- or anti-ferromagnetic edge magnetism, thereby offering the possibility to optimize the external fields needed to switch magnetic ordering. Most importantly, we show that the magnetic state alters the optical response of the flake leading to the possibility of opto-spintronic applications.



قيم البحث

اقرأ أيضاً

Ultra-thin planar heterostructures of graphene and other two-dimensional crystals have recently attracted much interest. Very high carrier mobility in a graphene-on-boron nitride assembly is now well-established, but it has been anticipated that appr opriately designed hybrids could perform other tasks as well. A heterostructure of graphene and molybdenum disulphide (MoS$_2$) is expected to be sensitive to photo illumination due to the optical bandgap in MoS$_2$. Despite significant advances in device architectures with both graphene and MoS$_2$, binary graphene-MoS$_2$ hybrids have not been realized so far, and the promising opto-electronic properties of such structures remain elusive. Here we demonstrate experimentally that graphene-on-MoS$_2$ binary heterostructures display an unexpected and remarkable persistent photoconductivity under illumination of white light. The photoconductivity can not only be tuned independently with both light intensity and back gate voltage, but in response to a suitable combination of light and gate voltage pulses the device functions as a re-writable optoelectronic switch or memory. The persistent, or `ON, state shows virtually no relaxation or decay within the the experimental time scales for low and moderate photoexcitation intensity, indicating a near-perfect charge retention. A microscopic model associates the persistence with strong localization of carriers in MoS$_2$. These effects are also observable at room temperature, and with chemical vapour deposited graphene, and hence are naturally scalable for large area applications.
This study investigates the strong photoluminescence (PL) and X-ray excited optical luminescence observed in nitrogen-functionalized 2D graphene nanoflakes (GNFs:N), which arise from the significantly enhanced density of states in the region of {pi} states and the gap between {pi} and {pi}* states. The increase in the number of the sp2 clusters in the form of pyridine-like N-C, graphite-N-like, and the C=O bonding and the resonant energy transfer from the N and O atoms to the sp2 clusters were found to be responsible for the blue shift and the enhancement of the main PL emission feature. The enhanced PL is strongly related to the induced changes of the electronic structures and bonding properties, which were revealed by the X-ray absorption near-edge structure, X-ray emission spectroscopy, and resonance inelastic X-ray scattering. The study demonstrates that PL emission can be tailored through appropriate tuning of the nitrogen and oxygen contents in GNFs and pave the way for new optoelectronic devices.
The electronic structure of bilayer graphene is investigated from a resonant Raman study using different laser excitation energies. The values of the parameters of the Slonczewski-Weiss-McClure model for graphite are measured experimentally and some of them differ significantly from those reported previously for graphite, specially that associated with the difference of the effective mass of electrons and holes. The splitting of the two TO phonon branches in bilayer graphene is also obtained from the experimental data. Our results have implications for bilayer graphene electronic devices.
There are a number of theoretical proposals based on strain engineering of graphene and other two-dimensional materials, however purely mechanical control of strain fields in these systems has remained a major challenge. The two approaches mostly use d so far either couple the electrical and mechanical properties of the system simultaneously or introduce some unwanted disturbances due to the substrate. Here, we report on silicon micro-machined comb-drive actuators to controllably and reproducibly induce strain in a suspended graphene sheet, in an entirely mechanical way. We use spatially resolved confocal Raman spectroscopy to quantify the induced strain, and we show that different strain fields can be obtained by engineering the clamping geometry, including tunable strain gradients of up to 1.4 %/$mu$m. Our approach also allows for multiple axis straining and is equally applicable to other two-dimensional materials, opening the door to an investigating their mechanical and electromechanical properties. Our measurements also clearly identify defects at the edges of a graphene sheet as being weak spots responsible for its mechanical failure.
We investigate electronic transport property of a graphene monolayer covered by a graphene nanoribbon. We demonstrate that electronic transmission of a monolayer can be reduced when covered by a nanoribbon. The transmission reduction occurs at differ ent energies determined by the width of nanoribbon. We explain the transmission reduction by using interference between wavefunctions in the monolayer and the nanoribbon. Furthermore, we show the transmission reduction of a monolayer is combinable when covered by more than one nanoribbon and propose a concept of combination of control for nano-application design.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا