ترغب بنشر مسار تعليمي؟ اضغط هنا

The radio pulsar population of the Small Magellanic Cloud

74   0   0.0 ( 0 )
 نشر من قبل Naomi Titus
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We model the present day, observable, normal radio pulsar population of the Small Magellanic Cloud (SMC). The pulsars are generated with SeBa, a binary population synthesis code that evolves binaries and the constituent stellar objects up to remnant formation and beyond. We define radio pulsars by selecting neutron stars that satisfy a selection of criteria defined by Galactic pulsars, and apply the detection thresholds of previous and future SMC pulsar surveys.The number of synthesised and recovered pulsars are exceptionally sensitive to the assumed star formation history and applied radio luminosity model, but is not affected extensively by the assumed common envelope model, metallicity, and neutron star kick velocity distribution. We estimate that the SMC formed (1.6$pm$0.3)$times 10^4$ normal pulsars during the last 100 Myrs. We study which pulsars could have been observed by the Parkes multibeam survey of the SMC, by applying the surveys specific selection effects, and recover 4.0$pm$0.8 synthetic pulsars.This is in agreement with their five observed pulsars. We also apply a proposed MeerKAT configuration for the upcoming SMC survey, and predict that the MeerKAT survey will detect 17.2$pm$2.5 pulsars.



قيم البحث

اقرأ أيضاً

The physics of core-collapse (CC) supernovae (SNe) and how the explosions depend on progenitor properties are central questions in astronomy. For only a handful of SNe, the progenitor star has been identified in pre-explosion images. Supernova remnan ts (SNRs), which are observed long after the original SN event, provide a unique opportunity to increase the number of progenitor measurements. Here, we systematically examine the stellar populations in the vicinities of 23 known SNRs in the Small Magellanic Cloud (SMC) using the star formation history (SFH) maps of Harris & Zaritsky (2004). We combine the results with constraints on the SNR metal abundances and environment from X-ray and optical observations. We find that 22 SNRs in the SMC have local SFHs and properties consistent with a CC explosion, several of which are likely to have been high-mass progenitors. This result supports recent theoretical findings that high-mass progenitors can produce successful explosions. We estimate the mass distribution of the CC progenitors and find that this distribution is similar to a Salpeter IMF (within the uncertainties), while this result is shallower than the mass distribution found in M31 and M33 by Jennings et al. (2014) and D{i}az-Rodr{i}guez et al. (2018) using a similar approach. Additionally, we find that a number of the SMC SNRs exhibit a burst of star formation between 50-200 Myr ago. As these sources are likely CC, this signature may be indicative of massive stars undergoing delayed CC as a consequence of binary interaction, rapid rotation, or low metallicity. In addition, the lack of Type Ia SNRs in the SMC is possibly a result of the short visibility times of these sources as they may fall below the sensitivity limits of current radio observations.
We used Spitzers Infrared Spectrograph (IRS) to observe stars in the Small Magellanic Cloud (SMC) selected from the Midcourse Space Experiment (MSX) Point Source Catalog. We concentrate on the dust properties of oxygen-rich evolved stars, which show less alumina than Galactic stars. This difference may arise from the SMCs lower metallicity, but it could be a selection effect: the SMC sample includes more stars which are brighter and thus more massive. The distribution of SMC stars along the silicate sequence looks more like that of Galactic red supergiants than asymptotic giant branch stars (AGBs). While many are definitively AGBs, several SMC stars show evidence of hot bottom burning. Other sources show mixed chemistry (oxygen-rich and carbon-rich features), including supergiants with PAH emission. MSX SMC 134 may be the first confirmed silicate/carbon star in the SMC, and MSX SMC 049 is a post-AGB candidate. MSX SMC 145, previously a candidate OH/IR star, is actually an AGB star with a background galaxy at z=0.16 along the same line-of-sight. We consider the overall characteristics of all the {em MSX} sources, the most infrared-bright objects in the SMC, in light of {em Spitzer}s higher sensitivity and resolution, and compare them with the object types expected from the original selection criteria. This population represents what will be seen in more distant galaxies by the James Webb Space Telescope (JWST). Color-color diagrams using the IRS spectra and JWST mid-infrared filters show how one can separate evolved stars from young stellar objects (YSOs) and distinguish among different YSO classes.
58 - Samantha Wu (1 , 2 , 2020
Most massive stars exchange mass with a companion, leading to evolution which is altered drastically from that expected of stars in isolation. Such systems are the result of unusual binary evolution pathways and, as such, may be used to place stringe nt constraints on the physics of these interactions. We use the R4 systems B[e] supergiant, which has been postulated to be the product of a binary stellar merger, to guide our understanding of such outcomes by comparing observations of R4 to the results of simulations of mergers performed with the 3d hydrodynamics code FLASH. Our approach tailors the simulation initial conditions to the observed properties of R4 and implements realistic stellar profiles generated by the 1d stellar evolution code MESA onto the 3d grid, resolving the merger inspiral to within $0.02, R_{odot}$. We then map the merger remnant into MESA to track its evolution on the HR diagram over a period of $10^4$ years. This generates models for a B[e] supergiant with stellar properties, age, and nebula structure in qualitative agreement with that of the R4 system. Our calculations provide concrete evidence to support the idea that R4 was originally a member of a triple system in which the inner binary merged after its most massive member evolved off the main sequence, producing a new object that is of similar mass yet significantly more luminous than the A supergiant companion. The potential applications of the code framework presented in this paper are wide ranging and can be used to generate models of a variety of merger stellar remnants.
277 - H. Klus , W.C.G. Ho , M.J. Coe 2013
We report on the long-term average spin period, rate of change of spin period and X-ray luminosity during outbursts for 42 Be X-ray binary systems in the Small Magellanic Cloud. We also collect and calculate parameters of each system and use these da ta to determine that all systems contain a neutron star which is accreting via a disc, rather than a wind, and that if these neutron stars are near spin equilibrium, then over half of them, including all with spin periods over about 100 s, have magnetic fields over the quantum critical level of 4.4x10^13 G. If these neutron stars are not close to spin equilibrium, then their magnetic fields are inferred to be much lower, of the order of 10^6-10^10 G, comparable to the fields of neutron stars in low-mass X-ray binaries. Both results are unexpected and have implications for the rate of magnetic field decay and the isolated neutron star population.
We report the discovery of a circular shell centred on the Be X-ray binary (BeXB) SXP 1323 in the Small Magellanic Cloud (SMC). The shell was detected in an Halpha image obtained with the Very Large Telescope (VLT). Follow-up spectroscopy with the So uthern African Large Telescope (SALT) showed that the shell expands with a velocity of $approx$ 100 km/s and that its emission is due to shock excitation. We suggest that this shell is the remnant of the supernova explosion that led to the formation of the SXP 1323s neutron star $approx$ 40 000 yr ago. SXP 1323 represents the second known case of a BeXB associated with a supernova remnant (the first one is SXP 1062). Interestingly, both these BeXBs harbour long period pulsars and are located in a low-metallicity galaxy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا