ﻻ يوجد ملخص باللغة العربية
Recent exoplanet observations reported a large number of multiple-planet systems, in which some of the planets are in a chain of resonances. The fraction of resonant systems to non-resonant systems provides clues about their formation history. We investigated the orbital stability of planets in resonant chains by considering the long-term evolution of planetary mass and stellar mass and using orbital calculations. We found that while resonant chains were stable, they can be destabilized by a change of $sim$10% in planetary mass. Such a mass evolution can occur by atmospheric escape due to photoevaporation. We also found that resonant chains can be broken by a stellar mass loss of $lesssim1$%, which would be explained by stellar winds or coronal mass ejections. The long-term mass change of planets and stars plays an important role in the orbital evolutions of planetary systems including super-Earths.
Planets are observed to orbit the component star(s) of stellar binary systems on so-called circumprimary or circumsecondary orbits, as well as around the entire binary system on so-called circumbinary orbits. Depending on the orbital parameters of th
We examine the eccentricity evolution of a system of two planets locked in a mean motion resonance, in which the outer planet loses energy and angular momentum. The sink of energy and angular momentum could be either a gas or planetesimal disk. We sh
A number of giant planet pairs discovered by the radial velocity method with period ratios $lesssim 2$ may reside in mean motion resonances. Convergent orbital migration and resonant capture at the time of formation would naturally explain the presen
We conducted a project of reinvestigating the 2017--2019 microlensing data collected by the high-cadence surveys with the aim of finding planets that were missed due to the deviations of planetary signals from the typical form of short-term anomalies
A radial velocity (RV) survey for intermediate-mass giants has been operated for over a decade at Okayama Astrophysical Observatory (OAO). The OAO survey has revealed that some giants show long-term linear RV accelerations (RV trends), indicating the