ترغب بنشر مسار تعليمي؟ اضغط هنا

Liquid crystal nose based on chiral photonic band gap materials: principles of selective response

51   0   0.0 ( 0 )
 نشر من قبل Oleksiy Roslyak V
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف P.V. Shibaev




اسأل ChatGPT حول البحث

Novel liquid crystalline (LC) compositions are suggested and studied as elements of LC-nose. This allows for optical detection of several volatile organic compounds (VOCs). Ethanol, toluene, pyridine and acetic acid were detected by means of colorimetric and spectroscopic techniques during their diffusion inside chiral elements of LC-nose. Selectivity to different VOCs is enhanced by means of components of liquid crystal matrix with different viscosity, affinities to the solvents, and abilities to form hydrogen bonding.



قيم البحث

اقرأ أيضاً

We propose systems with structures defined by self-assembled triply periodic minimal surfaces (STPMS) as candidates for photonic bandgap materials. To support our proposal we have calculated the photonic bands for different STPMS and we have found th at, at least, the double diamond and gyroid structures present full photonic bandgaps. Given the great variety of systems which crystalize in these structures, the diversity of possible materials that form them and the range of lattice constants they present, the construction of photonic bandgap materials with gaps in the visible range may be presently within reach.
260 - Feng Wu , Tyler Smart , Junqing Xu 2019
Identification and design of defects in two-dimensional (2D) materials as promising single photon emitters (SPE) requires a deep understanding of underlying carrier recombination mechanisms. Yet, the dominant mechanism of carrier recombination at def ects in 2D materials has not been well understood, and some outstanding questions remain: How do recombination processes at defects differ between 2D and 3D systems? What factors determine defects in 2D materials as excellent SPE at room temperature? In order to address these questions, we developed first-principles methods to accurately calculate the radiative and non-radiative recombination rates at defects in 2D materials, using h-BN as a prototypical example. We reveal the carrier recombination mechanism at defects in 2D materials being mostly dominated by defect-defect state recombination in contrast to defect-bulk state recombination in most 3D semiconductors. In particular, we disentangle the non-radiative recombination mechanism into key physical quantities: zero-phonon line (ZPL) and Huang-Rhys factor. At the end, we identified strain can effectively tune the electron-phonon coupling at defect centers and drastically change non-radiative recombination rates. Our theoretical development serves as a general platform for understanding carrier recombination at defects in 2D materials, while providing pathways for engineering of quantum efficiency of SPE.
Materials combining both a high refractive index and a wide band gap are of great interest for optoelectronic and sensor applications. However, these two properties are typically described by an inverse correlation with high refractive index appearin g in small gap materials and vice-versa. Here, we conduct a first-principles high-throughput study on more than 4000 semiconductors (with a special focus on oxides). Our data confirm the general inverse trend between refractive index and band gap but interesting outliers are also identified. The data are then analyzed through a simple model involving two main descriptors: the average optical gap and the effective frequency. The former can be determined directly from the electronic structure of the compounds, but the latter cannot. This calls for further analysis in order to obtain a predictive model. Nonetheless, it turns out that the negative effect of a large band gap on the refractive index can counterbalanced in two ways: (i) by limiting the difference between the direct band gap and the average optical gap which can be realized by a narrow distribution in energy of the optical transitions and (ii) by increasing the effective frequency which can be achieved through either a high number of transitions from the top of the valence band to the bottom of the conduction or a high average probability for these transitions. Focusing on oxides, we use our data to investigate how the chemistry influences this inverse relationship and rationalize why certain classes of materials would perform better. Our findings can be used to search for new compounds in many optical applications both in the linear and non-linear regime (waveguides, optical modulators, laser, frequency converter, etc.).
Using first principles simulations we have investigated the structural and bonding properties of dense fluid oxygen up to 180 GPa. We have found that band gap closure occurs in the molecular liquid, with a slow transition from a semi-conducting to a poor metallic state occurring over a wide pressure range. At approximately 80 GPa, molecular dissociation is observed in the metallic fluid. Spin fluctuations play a key role in determining the electronic structure of the low pressure fluid, while they are suppressed at high pressure.
136 - M.V. Gorkunov , M.A. Osipov 2007
We propose electrically tunable hybrid metamaterial consisting of special wire grid immersed into nematic liquid crystal. The plasma-like permittivity of the structure can be substantially varied due to switching of the liquid crystal alignment by ex ternal voltages applied to the wires. Depending on the scale of the structure, the effect is available for both microwave and optical frequency ranges.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا