ﻻ يوجد ملخص باللغة العربية
Translations between the quantum circuit model and the measurement-based one-way model are useful for verification and optimisation of quantum computations. They make crucial use of a property known as gflow. While gflow is defined for one-way computations allowing measurements in three different planes of the Bloch sphere, most research so far has focused on computations containing only measurements in the XY-plane. Here, we give the first circuit-extraction algorithm to work for one-way computations containing measurements in all three planes and having gflow. The algorithm is efficient and the resulting circuits do not contain ancillae. One-way computations are represented using the ZX-calculus, hence the algorithm also represents the most general known procedure for extracting circuits from ZX-diagrams. In developing this algorithm, we generalise several concepts and results previously known for computations containing only XY-plane measurements. We bring together several known rewrite rules for measurement patterns and formalise them in a unified notation using the ZX-calculus. These rules are used to simplify measurement patterns by reducing the number of qubits while preserving both the semantics and the existence of gflow. The results can be applied to circuit optimisation by translating circuits to patterns and back again.
We prove that the evidence lower bound (ELBO) employed by variational auto-encoders (VAEs) admits non-trivial solutions having constant posterior variances under certain mild conditions, removing the need to learn variances in the encoder. The proof
Across a wide range of applications, from autonomous vehicles to medical imaging, multi-spectral images provide an opportunity to extract additional information not present in color images. One of the most important steps in making this information r
Simulating realistic radar data has the potential to significantly accelerate the development of data-driven approaches to radar processing. However, it is fraught with difficulty due to the notoriously complex image formation process. Here we propos
The last decade has witnessed remarkable progress in the development of quantum technologies. Although fault-tolerant devices likely remain years away, the noisy intermediate-scale quantum devices of today may be leveraged for other purposes. Leading
This paper studies new properties of the front and back ends of a sorting network, and illustrates the utility of these in the search for new bounds on optimal sorting networks. Search focuses first on the outsides of the network and then on the inne