ﻻ يوجد ملخص باللغة العربية
To take full advantage of fast-growing unlabeled networked data, this paper introduces a novel self-supervised strategy for graph representation learning by exploiting natural supervision provided by the data itself. Inspired by human social behavior, we assume that the global context of each node is composed of all nodes in the graph since two arbitrary entities in a connected network could interact with each other via paths of varying length. Based on this, we investigate whether the global context can be a source of free and effective supervisory signals for learning useful node representations. Specifically, we randomly select pairs of nodes in a graph and train a well-designed neural net to predict the contextual position of one node relative to the other. Our underlying hypothesis is that the representations learned from such within-graph context would capture the global topology of the graph and finely characterize the similarity and differentiation between nodes, which is conducive to various downstream learning tasks. Extensive benchmark experiments including node classification, clustering, and link prediction demonstrate that our approach outperforms many state-of-the-art unsupervised methods and sometimes even exceeds the performance of supervised counterparts.
Graph neural networks~(GNNs) apply deep learning techniques to graph-structured data and have achieved promising performance in graph representation learning. However, existing GNNs rely heavily on enough labels or well-designed negative samples. To
We present the Topology Transformation Equivariant Representation learning, a general paradigm of self-supervised learning for node representations of graph data to enable the wide applicability of Graph Convolutional Neural Networks (GCNNs). We form
This paper studies unsupervised/self-supervised whole-graph representation learning, which is critical in many tasks such as molecule properties prediction in drug and material discovery. Existing methods mainly focus on preserving the local similari
In self-supervised learning, a system is tasked with achieving a surrogate objective by defining alternative targets on a set of unlabeled data. The aim is to build useful representations that can be used in downstream tasks, without costly manual an
Graph classification is a widely studied problem and has broad applications. In many real-world problems, the number of labeled graphs available for training classification models is limited, which renders these models prone to overfitting. To addres