ﻻ يوجد ملخص باللغة العربية
Weyl semimetals are phases of matter with excitations effectively described by massless Dirac fermions. Their critical nature makes unclear the persistence of such phase in presence of disorder. We present a theorem ensuring the stability of the semimetallic phase in presence of weak quasiperiodic disorder. The proof relies on the subtle interplay of the relativistic Quantum Field Theory description combined with number theoretical properties used in KAM theory.
We theoretically study the topological robustness of the surface physics induced by Weyl Fermi-arc surface states in the presence of short-ranged quenched disorder and surface-bulk hybridization. This is investigated with numerically exact calculatio
Weyl Semimetals (WS) are a new class of Dirac-type materials exhibiting a phase with bulk energy nodes and an associated vanishing density of states (DOS). We investigate the stability of this nodal DOS suppression in the presence of local impurities
The Weyl semimetal (WSM) is a newly proposed quantum state of matter. It has Weyl nodes in bulk excitations and Fermi arcs surface states. We study the effects of disorder and localization in WSMs and find three exotic phase transitions. (I) Two Weyl
Weyl fermions play a major role in quantum field theory but have been quite elusive as fundamental particles. Materials based on quasi two-dimensional bismuth layers were recently designed and provide an arena for the study of the interplay between a
We study the electronic contribution to the thermal conductivity and the thermopower of Weyl and Dirac semimetals using a semiclassical Boltzmann approach. We investigate the effect of various relaxation processes including disorder and interactions