ﻻ يوجد ملخص باللغة العربية
We propose the concept of Diederich--Forn{ae}ss and Steinness indices on compact pseudoconvex CR manifolds of hypersurface type in terms of the DAngelo 1-form. When the CR manifold bounds a domain in a complex manifold, under certain additional non-degeneracy condition, those indices are shown to coincide with the original Diederich--Forn{ae}ss and Steinness indices of the domain, and CR invariance of the original indices follows.
In this paper, we prove the semi-continuity theorem of Diederich-Forn{ae}ss index and Steinness index under a smooth deformation of pseudoconvex domains in Stein manifolds.
We characterize the Diederich-Fornaess index and the Steinness index in terms of a special 1-form, which we call DAngelo 1-form. We then prove that the Diederich-Fornaess and Steinness indices are invariant under CR-diffeomorphisms by showing CR-invariance of DAngelo 1-forms.
We introduce the concept of Steinness index related to the Stein neighborhood basis. We then show several results: (1) The existence of Steinness index is equivalent to that of strong Stein neighborhood basis. (2) On the Diederich-Forn{ae}ss worm dom
Applying Lies theory, we show that any $mathcal{C}^omega$ hypersurface $M^5 subset mathbb{C}^3$ in the class $mathfrak{C}_{2,1}$ carries Cartan-Moser chains of orders $1$ and $2$. Integrating and straightening any order $2$ chain at any point $p in
A smooth, strongly $mathbb{C}$-convex, real hypersurface $S$ in $mathbb{CP}^n$ admits a projective dual CR structure in addition to the standard CR structure. Given a smooth function $u$ on $S$, we provide characterizations for when $u$ can be decomp