ﻻ يوجد ملخص باللغة العربية
The properties of individual neurons are often analyzed in order to understand the biological and artificial neural networks in which theyre embedded. Class selectivity-typically defined as how different a neurons responses are across different classes of stimuli or data samples-is commonly used for this purpose. However, it remains an open question whether it is necessary and/or sufficient for deep neural networks (DNNs) to learn class selectivity in individual units. We investigated the causal impact of class selectivity on network function by directly regularizing for or against class selectivity. Using this regularizer to reduce class selectivity across units in convolutional neural networks increased test accuracy by over 2% for ResNet18 trained on Tiny ImageNet. For ResNet20 trained on CIFAR10 we could reduce class selectivity by a factor of 2.5 with no impact on test accuracy, and reduce it nearly to zero with only a small ($sim$2%) drop in test accuracy. In contrast, regularizing to increase class selectivity significantly decreased test accuracy across all models and datasets. These results indicate that class selectivity in individual units is neither sufficient nor strictly necessary, and can even impair DNN performance. They also encourage caution when focusing on the properties of single units as representative of the mechanisms by which DNNs function.
This note argues about the validity of web-graph data used in the literature.
Representational sparsity is known to affect robustness to input perturbations in deep neural networks (DNNs), but less is known about how the semantic content of representations affects robustness. Class selectivity-the variability of a units respon
We demonstrate how broadband angular selectivity can be achieved with stacks of one-dimensionally periodic photonic crystals, each consisting of alternating isotropic layers and effective anisotropic layers, where each effective anisotropic layer is
Deep learning emerges as an important new resource-intensive workload and has been successfully applied in computer vision, speech, natural language processing, and so on. Distributed deep learning is becoming a necessity to cope with growing data an
We show that electron correlations lead to a bad metallic state in chalcogenides FeSe and FeTe despite the intermediate value of the Hubbard repulsion $U$ and Hunds rule coupling $J$. The evolution of the quasi particle weight $Z$ as a function of th