ﻻ يوجد ملخص باللغة العربية
By combining single crystal x-ray and neutron diffraction, and the magnetodielectric measurements on single crystal Fe4Nb2O9, we present the magnetic structure and the symmetry-allowed magnetoelectric coupling in Fe4Nb2O9. It undergoes an antiferromagnetic transition at TN=93 K, followed by a displacive transition at TS=70 K. The temperature-dependent dielectric constant of Fe4Nb2O9 is strongly anisotropic with the first anomaly at 93 K due to the exchange striction as a result of the long range spin order, and the second one at 70 K emanating from the structural phase transition primarily driven by the O atomic displacements. Magneticfield induced magnetoelectric coupling was observed in single crystal Fe4Nb2O9 and is compatible with the solved magnetic structure that is characteristic of antiferromagnetically arranged ferromagnetic chains in the honeycomb plane. We propose that such magnetic symmetry should be immune to external magnetic fields to some extent favored by the freedom of rotation of moments in the honeycomb plane, laying out a promising system to control the magnetoelectric properties by magnetic fields.
Through analysis of single crystal neutron diffraction data, we present the magnetic structures of magnetoelectric Co4Nb2O9 under various magnetic fields. In zero-field, neutron diffraction experiments below TN=27 K reveal that the Co2+ moments order
We investigate the low temperature magnetic properties of a $S=frac{5}{2}$ Heisenberg kagome antiferromagnet, the layered monodiphosphate Li$_9$Fe$_3$(P$_2$O$_7$)$_3$(PO$_4$)$_2$, using magnetization measurements and $^{31}$P nuclear magnetic resonan
Fe$^{3+}$ $S = 5/2$ ions form saw-tooth like chains along the $a$ axis of the oxo-selenite Fe$_2$O(SeO$_3$)$_2$ and an onset of long-range magnetic order is observed for temperatures below $T_C = 105$ K. This order leads to distinct fingerprints in p
We report on thermodynamic, magnetization, and muon spin relaxation measurements of the strong spin-orbit coupled iridate Ba$_3$IrTi$_2$O$_9$, which constitutes a new frustration motif made up a mixture of edge- and corner-sharing triangles. In spite
The recently discovered material Cs$_3$Fe$_2$Br$_9$ contains Fe$_2$Br$_9$ bi-octahedra forming triangular layers with hexagonal stacking along the $c$ axis. In contrast to isostructural Cr-based compounds, the zero-field ground state is not a nonmagn