ترغب بنشر مسار تعليمي؟ اضغط هنا

Gated Fusion Network for Degraded Image Super Resolution

105   0   0.0 ( 0 )
 نشر من قبل Hang Dong
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Single image super resolution aims to enhance image quality with respect to spatial content, which is a fundamental task in computer vision. In this work, we address the task of single frame super resolution with the presence of image degradation, e.g., blur, haze, or rain streaks. Due to the limitations of frame capturing and formation processes, image degradation is inevitable, and the artifacts would be exacerbated by super resolution methods. To address this problem, we propose a dual-branch convolutional neural network to extract base features and recovered features separately. The base features contain local and global information of the input image. On the other hand, the recovered features focus on the degraded regions and are used to remove the degradation. Those features are then fused through a recursive gate module to obtain sharp features for super resolution. By decomposing the feature extraction step into two task-independent streams, the dual-branch model can facilitate the training process by avoiding learning the mixed degradation all-in-one and thus enhance the final high-resolution prediction results. We evaluate the proposed method in three degradation scenarios. Experiments on these scenarios demonstrate that the proposed method performs more efficiently and favorably against the state-of-the-art approaches on benchmark datasets.



قيم البحث

اقرأ أيضاً

89 - Xinyi Zhang , Hang Dong , Zhe Hu 2018
Single-image super-resolution is a fundamental task for vision applications to enhance the image quality with respect to spatial resolution. If the input image contains degraded pixels, the artifacts caused by the degradation could be amplified by su per-resolution methods. Image blur is a common degradation source. Images captured by moving or still cameras are inevitably affected by motion blur due to relative movements between sensors and objects. In this work, we focus on the super-resolution task with the presence of motion blur. We propose a deep gated fusion convolution neural network to generate a clear high-resolution frame from a single natural image with severe blur. By decomposing the feature extraction step into two task-independent streams, the dual-branch design can facilitate the training process by avoiding learning the mixed degradation all-in-one and thus enhance the final high-resolution prediction results. Extensive experiments demonstrate that our method generates sharper super-resolved images from low-resolution inputs with high computational efficiency.
Single image super-resolution(SISR) has witnessed great progress as convolutional neural network(CNN) gets deeper and wider. However, enormous parameters hinder its application to real world problems. In this letter, We propose a lightweight feature fusion network (LFFN) that can fully explore multi-scale contextual information and greatly reduce network parameters while maximizing SISR results. LFFN is built on spindle blocks and a softmax feature fusion module (SFFM). Specifically, a spindle block is composed of a dimension extension unit, a feature exploration unit and a feature refinement unit. The dimension extension layer expands low dimension to high dimension and implicitly learns the feature maps which is suitable for the next unit. The feature exploration unit performs linear and nonlinear feature exploration aimed at different feature maps. The feature refinement layer is used to fuse and refine features. SFFM fuses the features from different modules in a self-adaptive learning manner with softmax function, making full use of hierarchical information with a small amount of parameter cost. Both qualitative and quantitative experiments on benchmark datasets show that LFFN achieves favorable performance against state-of-the-art methods with similar parameters.
Recently, single-image super-resolution has made great progress owing to the development of deep convolutional neural networks (CNNs). The vast majority of CNN-based models use a pre-defined upsampling operator, such as bicubic interpolation, to upsc ale input low-resolution images to the desired size and learn non-linear mapping between the interpolated image and ground truth high-resolution (HR) image. However, interpolation processing can lead to visual artifacts as details are over-smoothed, particularly when the super-resolution factor is high. In this paper, we propose a Deep Recurrent Fusion Network (DRFN), which utilizes transposed convolution instead of bicubic interpolation for upsampling and integrates different-level features extracted from recurrent residual blocks to reconstruct the final HR images. We adopt a deep recurrence learning strategy and thus have a larger receptive field, which is conducive to reconstructing an image more accurately. Furthermore, we show that the multi-level fusion structure is suitable for dealing with image super-resolution problems. Extensive benchmark evaluations demonstrate that the proposed DRFN performs better than most current deep learning methods in terms of accuracy and visual effects, especially for large-scale images, while using fewer parameters.
A very deep convolutional neural network (CNN) has recently achieved great success for image super-resolution (SR) and offered hierarchical features as well. However, most deep CNN based SR models do not make full use of the hierarchical features fro m the original low-resolution (LR) images, thereby achieving relatively-low performance. In this paper, we propose a novel residual dense network (RDN) to address this problem in image SR. We fully exploit the hierarchical features from all the convolutional layers. Specifically, we propose residual dense block (RDB) to extract abundant local features via dense connected convolutional layers. RDB further allows direct connections from the state of preceding RDB to all the layers of current RDB, leading to a contiguous memory (CM) mechanism. Local feature fusion in RDB is then used to adaptively learn more effective features from preceding and current local features and stabilizes the training of wider network. After fully obtaining dense local features, we use global feature fusion to jointly and adaptively learn global hierarchical features in a holistic way. Extensive experiments on benchmark datasets with different degradation models show that our RDN achieves favorable performance against state-of-the-art methods.
Convolutional neural networks have allowed remarkable advances in single image super-resolution (SISR) over the last decade. Among recent advances in SISR, attention mechanisms are crucial for high-performance SR models. However, the attention mechan ism remains unclear on why it works and how it works in SISR. In this work, we attempt to quantify and visualize attention mechanisms in SISR and show that not all attention modules are equally beneficial. We then propose attention in attention network (A$^2$N) for more efficient and accurate SISR. Specifically, A$^2$N consists of a non-attention branch and a coupling attention branch. A dynamic attention module is proposed to generate weights for these two branches to suppress unwanted attention adjustments dynamically, where the weights change adaptively according to the input features. This allows attention modules to specialize to beneficial examples without otherwise penalties and thus greatly improve the capacity of the attention network with few parameters overhead. Experimental results demonstrate that our final model A$^2$N could achieve superior trade-off performances comparing with state-of-the-art networks of similar sizes. Codes are available at https://github.com/haoyuc/A2N.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا