ﻻ يوجد ملخص باللغة العربية
Electronic health records (EHR) consist of longitudinal clinical observations portrayed with sparsity, irregularity, and high-dimensionality, which become major obstacles in drawing reliable downstream clinical outcomes. Although there exist great numbers of imputation methods to tackle these issues, most of them ignore correlated features, temporal dynamics and entirely set aside the uncertainty. Since the missing value estimates involve the risk of being inaccurate, it is appropriate for the method to handle the less certain information differently than the reliable data. In that regard, we can use the uncertainties in estimating the missing values as the fidelity score to be further utilized to alleviate the risk of biased missing value estimates. In this work, we propose a novel variational-recurrent imputation network, which unifies an imputation and a prediction network by taking into account the correlated features, temporal dynamics, as well as the uncertainty. Specifically, we leverage the deep generative model in the imputation, which is based on the distribution among variables, and a recurrent imputation network to exploit the temporal relations, in conjunction with utilization of the uncertainty. We validated the effectiveness of our proposed model on two publicly available real-world EHR datasets: PhysioNet Challenge 2012 and MIMIC-III, and compared the results with other competing state-of-the-art methods in the literature.
Real-world clinical time series data sets exhibit a high prevalence of missing values. Hence, there is an increasing interest in missing data imputation. Traditional statistical approaches impose constraints on the data-generating process and decoupl
Time series imputation is a fundamental task for understanding time series with missing data. Existing methods either do not directly handle irregularly-sampled data or degrade severely with sparsely observed data. In this work, we reformulate time s
Deep learning-based support systems have demonstrated encouraging results in numerous clinical applications involving the processing of time series data. While such systems often are very accurate, they have no inherent mechanism for explaining what
Time series models with recurrent neural networks (RNNs) can have high accuracy but are unfortunately difficult to interpret as a result of feature-interactions, temporal-interactions, and non-linear transformations. Interpretability is important in
The Nonlinear autoregressive exogenous (NARX) model, which predicts the current value of a time series based upon its previous values as well as the current and past values of multiple driving (exogenous) series, has been studied for decades. Despite