ﻻ يوجد ملخص باللغة العربية
We consider exact asymptotics of the minimax risk for global testing against sparse alternatives in the context of high dimensional linear regression. Our results characterize the leading order behavior of this minimax risk in several regimes, uncovering new phase transitions in its behavior. This complements a vast literature characterizing asymptotic consistency in this problem, and provides a useful benchmark, against which the performance of specific tests may be compared. Finally, we provide some preliminary evidence that popular sparsity adaptive procedures might be sub-optimal in terms of the minimax risk.
We consider the problem of conditional independence testing of $X$ and $Y$ given $Z$ where $X,Y$ and $Z$ are three real random variables and $Z$ is continuous. We focus on two main cases - when $X$ and $Y$ are both discrete, and when $X$ and $Y$ are
We address the problem of adaptive minimax density estimation on $bR^d$ with $bL_p$--loss on the anisotropic Nikolskii classes. We fully characterize behavior of the minimax risk for different relationships between regularity parameters and norm inde
Permutation tests are widely used in statistics, providing a finite-sample guarantee on the type I error rate whenever the distribution of the samples under the null hypothesis is invariant to some rearrangement. Despite its increasing popularity and
This paper presents minimax rates for density estimation when the data dimension $d$ is allowed to grow with the number of observations $n$ rather than remaining fixed as in previous analyses. We prove a non-asymptotic lower bound which gives the wor
Testing for white noise is a classical yet important problem in statistics, especially for diagnostic checks in time series modeling and linear regression. For high-dimensional time series in the sense that the dimension $p$ is large in relation to t