ﻻ يوجد ملخص باللغة العربية
The Sentence-State LSTM (S-LSTM) is a powerful and high efficient graph recurrent network, which views words as nodes and performs layer-wise recurrent steps between them simultaneously. Despite its successes on text representations, the S-LSTM still suffers from two drawbacks. Firstly, given a sentence, certain words are usually more ambiguous than others, and thus more computation steps need to be taken for these difficult words and vice versa. However, the S-LSTM takes fixed computation steps for all words, irrespective of their hardness. The secondary one comes from the lack of sequential information (e.g., word order) that is inherently important for natural language. In this paper, we try to address these issues and propose a depth-adaptive mechanism for the S-LSTM, which allows the model to learn how many computational steps to conduct for different words as required. In addition, we integrate an extra RNN layer to inject sequential information, which also serves as an input feature for the decision of adaptive depths. Results on the classic text classification task (24 datasets in various sizes and domains) show that our model brings significant improvements against the conventional S-LSTM and other high-performance models (e.g., the Transformer), meanwhile achieving a good accuracy-speed trade off.
Recently, researches have explored the graph neural network (GNN) techniques on text classification, since GNN does well in handling complex structures and preserving global information. However, previous methods based on GNN are mainly faced with th
Cross-lingual text classification aims at training a classifier on the source language and transferring the knowledge to target languages, which is very useful for low-resource languages. Recent multilingual pretrained language models (mPLM) achieve
Text classification is an important and classical problem in natural language processing. There have been a number of studies that applied convolutional neural networks (convolution on regular grid, e.g., sequence) to classification. However, only a
Multi-label text classification (MLTC) is an attractive and challenging task in natural language processing (NLP). Compared with single-label text classification, MLTC has a wider range of applications in practice. In this paper, we propose a heterog
Extractive text summarization aims at extracting the most representative sentences from a given document as its summary. To extract a good summary from a long text document, sentence embedding plays an important role. Recent studies have leveraged gr