ﻻ يوجد ملخص باللغة العربية
The dexterity of conventional myoelectric prostheses is limited in part by the small datasets used to train the control algorithms. Variations in surface electrode positioning make it difficult to collect consistent data and to estimate motor intent reliably over time. To address these challenges, we developed an inexpensive, easy-to-don sleeve that can record robust and repeatable surface electromyography from 32 embedded monopolar electrodes. Embedded grommets are used to consistently align the sleeve with natural skin markings (e.g., moles, freckles, scars). The sleeve can be manufactured in a few hours for less than $60. Data from seven intact participants show the sleeve provides a signal-to-noise ratio of 14, a don-time under 11 seconds, and sub-centimeter precision for electrode placement. Furthermore, in a case study with one intact participant, we use the sleeve to demonstrate that neural networks can provide simultaneous and proportional control of six degrees of freedom, even 263 days after initial algorithm training. We also highlight that consistent recordings, accumulated over time to establish a large dataset, significantly improve dexterity. These results suggest that deep learning with a 74-layer neural network can substantially improve the dexterity and stability of myoelectric prosthetic control, and that deep-learning techniques can be readily instantiated and further validated through inexpensive sleeves/sockets with consistent recording locations.
Multiarticulate bionic arms are now capable of mimicking the endogenous movements of the human hand. 3D-printing has reduced the cost of prosthetic hands themselves, but there is currently no low-cost alternative to dexterous electromyographic (EMG)
Human environments contain numerous objects configured in a variety of arrangements. Our goal is to enable robots to repose previously unseen objects according to learned semantic relationships in novel environments. We break this problem down into t
Bypass sockets allow researchers to perform tests of prosthetic systems from the prosthetic users perspective. We designed a modular upper-limb bypass socket with 3D-printed components that can be easily modified for use with a variety of terminal de
Reinforcement learning (RL) is a promising approach and has limited success towards real-world applications, because ensuring safe exploration or facilitating adequate exploitation is a challenges for controlling robotic systems with unknown models a
Non-rigid cortical registration is an important and challenging task due to the geometric complexity of the human cortex and the high degree of inter-subject variability. A conventional solution is to use a spherical representation of surface propert