ترغب بنشر مسار تعليمي؟ اضغط هنا

Do all Roads Lead to Rome? Understanding the Role of Initialization in Iterative Back-Translation

72   0   0.0 ( 0 )
 نشر من قبل Mikel Artetxe
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Back-translation provides a simple yet effective approach to exploit monolingual corpora in Neural Machine Translation (NMT). Its iterative variant, where two opposite NMT models are jointly trained by alternately using a synthetic parallel corpus generated by the reverse model, plays a central role in unsupervised machine translation. In order to start producing sound translations and provide a meaningful training signal to each other, existing approaches rely on either a separate machine translation system to warm up the iterative procedure, or some form of pre-training to initialize the weights of the model. In this paper, we analyze the role that such initialization plays in iterative back-translation. Is the behavior of the final system heavily dependent on it? Or does iterative back-translation converge to a similar solution given any reasonable initialization? Through a series of empirical experiments over a diverse set of warmup systems, we show that, although the quality of the initial system does affect final performance, its effect is relatively small, as iterative back-translation has a strong tendency to convergence to a similar solution. As such, the margin of improvement left for the initialization method is narrow, suggesting that future research should focus more on improving the iterative mechanism itself.



قيم البحث

اقرأ أيضاً

The global geometry of language models is important for a range of applications, but language model probes tend to evaluate rather local relations, for which ground truths are easily obtained. In this paper we exploit the fact that in geography, grou nd truths are available beyond local relations. In a series of experiments, we evaluate the extent to which language model representations of city and country names are isomorphic to real-world geography, e.g., if you tell a language model where Paris and Berlin are, does it know the way to Rome? We find that language models generally encode limited geographic information, but with larger models performing the best, suggesting that geographic knowledge can be induced from higher-order co-occurrence statistics.
The growing literature on benign overfitting in overparameterized models has been mostly restricted to regression or binary classification settings; however, most success stories of modern machine learning have been recorded in multiclass settings. M otivated by this discrepancy, we study benign overfitting in multiclass linear classification. Specifically, we consider the following popular training algorithms on separable data: (i) empirical risk minimization (ERM) with cross-entropy loss, which converges to the multiclass support vector machine (SVM) solution; (ii) ERM with least-squares loss, which converges to the min-norm interpolating (MNI) solution; and, (iii) the one-vs-all SVM classifier. First, we provide a simple sufficient condition under which all three algorithms lead to classifiers that interpolate the training data and have equal accuracy. When the data is generated from Gaussian mixtures or a multinomial logistic model, this condition holds under high enough effective overparameterization. Second, we derive novel error bounds on the accuracy of the MNI classifier, thereby showing that all three training algorithms lead to benign overfitting under sufficient overparameterization. Ultimately, our analysis shows that good generalization is possible for SVM solutions beyond the realm in which typical margin-based bounds apply.
Recent work in Neural Machine Translation (NMT) has shown significant quality gains from noised-beam decoding during back-translation, a method to generate synthetic parallel data. We show that the main role of such synthetic noise is not to diversif y the source side, as previously suggested, but simply to indicate to the model that the given source is synthetic. We propose a simpler alternative to noising techniques, consisting of tagging back-translated source sentences with an extra token. Our results on WMT outperform noised back-translation in English-Romanian and match performance on English-German, re-defining state-of-the-art in the former.
122 - Siyao Peng , Amir Zeldes 2019
We describe and evaluate different approaches to the conversion of gold standard corpus data from Stanford Typed Dependencies (SD) and Penn-style constituent trees to the latest English Universal Dependencies representation (UD 2.2). Our results indi cate that pure SD to UD conversion is highly accurate across multiple genres, resulting in around 1.5% errors, but can be improved further to fewer than 0.5% errors given access to annotations beyond the pure syntax tree, such as entity types and coreference resolution, which are necessary for correct generation of several UD relations. We show that constituent-based conversion using CoreNLP (with automatic NER) performs substantially worse in all genres, including when using gold constituent trees, primarily due to underspecification of phrasal grammatical functions.
Recent unsupervised machine translation (UMT) systems usually employ three main principles: initialization, language modeling and iterative back-translation, though they may apply them differently. Crucially, iterative back-translation and denoising auto-encoding for language modeling provide data diversity to train the UMT systems. However, the gains from these diversification processes has seemed to plateau. We introduce a novel component to the standard UMT framework called Cross-model Back-translated Distillation (CBD), that is aimed to induce another level of data diversification that existing principles lack. CBD is applicable to all previous UMT approaches. In our experiments, CBD achieves the state of the art in the WMT14 English-French, WMT16 English-German and English-Romanian bilingual unsupervised translation tasks, with 38.2, 30.1, and 36.3 BLEU respectively. It also yields 1.5-3.3 BLEU improvements in IWSLT English-French and English-German tasks. Through extensive experimental analyses, we show that CBD is effective because it embraces data diversity while other similar variants do not.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا