ﻻ يوجد ملخص باللغة العربية
Existing few-shot learning (FSL) methods assume that there exist sufficient training samples from source classes for knowledge transfer to target classes with few training samples. However, this assumption is often invalid, especially when it comes to fine-grained recognition. In this work, we define a new FSL setting termed few-shot fewshot learning (FSFSL), under which both the source and target classes have limited training samples. To overcome the source class data scarcity problem, a natural option is to crawl images from the web with class names as search keywords. However, the crawled images are inevitably corrupted by large amount of noise (irrelevant images) and thus may harm the performance. To address this problem, we propose a graph convolutional network (GCN)-based label denoising (LDN) method to remove the irrelevant images. Further, with the cleaned web images as well as the original clean training images, we propose a GCN-based FSL method. For both the LDN and FSL tasks, a novel adaptive aggregation GCN (AdarGCN) model is proposed, which differs from existing GCN models in that adaptive aggregation is performed based on a multi-head multi-level aggregation module. With AdarGCN, how much and how far information carried by each graph node is propagated in the graph structure can be determined automatically, therefore alleviating the effects of both noisy and outlying training samples. Extensive experiments show the superior performance of our AdarGCN under both the new FSFSL and the conventional FSL settings.
In this paper we present the first baseline results for the task of few-shot learning of discrete embedding vectors for image recognition. Few-shot learning is a highly researched task, commonly leveraged by recognition systems that are resource cons
Zero-shot and few-shot learning aim to improve generalization to unseen concepts, which are promising in many realistic scenarios. Due to the lack of data in unseen domain, relation modeling between seen and unseen domains is vital for knowledge tran
Few-shot learning, which aims at extracting new concepts rapidly from extremely few examples of novel classes, has been featured into the meta-learning paradigm recently. Yet, the key challenge of how to learn a generalizable classifier with the capa
Existing few-shot learning (FSL) methods make the implicit assumption that the few target class samples are from the same domain as the source class samples. However, in practice this assumption is often invalid -- the target classes could come from
Current machine learning has made great progress on computer vision and many other fields attributed to the large amount of high-quality training samples, while it does not work very well on genomic data analysis, since they are notoriously known as