ﻻ يوجد ملخص باللغة العربية
Random measurements have been shown to induce a phase transition in an extended quantum system evolving under chaotic unitary dynamics, when the strength of measurements exceeds a threshold value. Below this threshold, a steady state with a sub-thermal volume law entanglement emerges, which is resistant to the disentangling action of measurements, suggesting a connection to quantum error-correcting codes. Here we quantify these notions by identifying a universal, subleading logarithmic contribution to the volume law entanglement entropy: $S^{(2)}(A)=kappa L_A+frac{3}{2}log L_A$ which bounds the mutual information between a qudit inside region $A$ and the rest of the system. Specifically, we find the power law decay of the mutual information $I({x}:bar{A})propto x^{-3/2}$ with distance $x$ from the regions boundary, which implies that measuring a qudit deep inside $A$ will have negligible effect on the entanglement of $A$. We obtain these results by mapping the entanglement dynamics to the imaginary time evolution of an Ising model, to which we can apply field-theoretic and matrix-product-state techniques. Finally, exploiting the error-correction viewpoint, we assume that the volume-law state is an encoding of a Page state in a quantum error-correcting code to obtain a bound on the critical measurement strength $p_{c}$ as a function of the qudit dimension $d$: $p_{c}log[(d^{2}-1)({p_{c}^{-1}-1})]le log[(1-p_{c})d]$. The bound is saturated at $p_c(drightarrowinfty)=1/2$ and provides a reasonable estimate for the qubit transition: $p_c(d=2) le 0.1893$.
Models for non-unitary quantum dynamics, such as quantum circuits that include projective measurements, have been shown to exhibit rich quantum critical behavior. There are many complementary perspectives on this behavior. For example, there is a kno
A quantum many-body system whose dynamics includes local measurements at a nonzero rate can be in distinct dynamical phases, with differing entanglement properties. We introduce theoretical approaches to measurement-induced phase transitions (MPT) an
Starting from a state of low quantum entanglement, local unitary time evolution increases the entanglement of a quantum many-body system. In contrast, local projective measurements disentangle degrees of freedom and decrease entanglement. We study th
We study the level-spacing statistics in the entanglement spectrum of output states of random universal quantum circuits where qubits are subject to a finite probability of projection to the computational basis at each time step. We encounter two pha
A system is in a self-organized critical state if the distribution of some measured events (avalanche sizes, for instance) obeys a power law for as many decades as it is possible to calculate or measure. The finite-size scaling of this distribution f