ﻻ يوجد ملخص باللغة العربية
IGR J17591-2342 is a recently INTEGRAL discovered accreting millisecond X-ray pulsar that went into outburst around July 21, 2018. To better understand the physics acting in these systems during the outburst episode we performed detailed temporal-, timing- and spectral analyses across the 0.3-300 keV band using data from NICER, XMM-Newton, NuSTAR and INTEGRAL. The hard X-ray 20-60 keV outburst profile is composed of four flares. During the maximum of the last flare we discovered a type-I thermonuclear burst in INTEGRAL JEM-X data. We derived a distance of 7.6+/-0.7 kpc, adopting Eddington luminosity limited photospheric radius expansion burst emission and assuming anisotropic emission. In the timing analysis using all NICER 1-10 keV monitoring data we observed a rather complex behaviour starting with a spin-up period, followed by a frequency drop, a episode of constant frequency and concluding with irregular behaviour till the end of the outburst. The 1-50 keV phase distributions of the pulsed emission, detected up to $sim$ 120 keV using INTEGRAL ISGRI data, was decomposed in three Fourier harmonics showing that the pulsed fraction of the fundamental increases from ~10% to ~17% going from ~1.5 to ~4 keV, while the harder photons arrive earlier than the soft photons for energies <10 keV. The total emission spectrum of IGR J17591-2342 across the 0.3-150 keV band could adequately be fitted in terms of an absorbed compPS model yielding as best fit parameters a column density of N_H=(2.09+/-0.05) x 10^{22} /cm2, a blackbody seed photon temperature kT_bb,seed of 0.64+/- 0.02 keV, electron temperature kT_e=38.8+/-1.2 keV and Thomson optical depth Tau_T=1.59+/-0.04. The fit normalisation results in an emission area radius of 11.3+/-0.5 km adopting a distance of 7.6 kpc. Finally, the results are discussed within the framework of accretion physics- and X-ray thermonuclear burst theory.
We report on the phase-coherent timing analysis of the accreting millisecond X-ray pulsar IGR J17591-2342, using Neutron Star Interior Composition Explorer (NICER) data taken during the outburst of the source between 2018 August 15 and 2018 October 1
IGR J17591$-$2342 is a new accreting millisecond X-ray pulsar (AMXP) that was recently discovered in outburst in 2018. Early observations revealed that the sources radio emission is brighter than that of any other known neutron star low-mass X-ray bi
IGR J17591-2342 is an accreting millisecond X-ray pulsar discovered in 2018 August in scans of the Galactic bulge and center by the INTEGRAL X-ray and gamma-ray observatory. It exhibited an unusual outburst profile with multiple peaks in the X-ray, a
We report on the discovery by the Nuclear Spectroscopic Telescope Array (NuSTAR) and the Neutron Star Interior Composition Explorer (NICER) of the accreting millisecond X-ray pulsar IGR J17591-2342, detecting coherent X-ray pulsations around 527.4 Hz
The accreting millisecond X-ray pulsar Swift J1756.9$-$2508 went into outburst in April 2018 and June 2019, 8.7 yr after the previous activity period. We investigated the temporal, timing and spectral properties of these two outbursts using data from