Discrete correlation of order 2 of generalized Rudin--Shapiro sequences on alphabets of arbitrary size


الملخص بالإنكليزية

In 2009, Grant, Shallit, and Stoll constructed a large family of pseudorandom sequences, called generalized Rudin--Shapiro sequences, for which they established some results about the average of discrete correlation coefficients of order 2 in cases where the size of the alphabet is a prime number or a squarefree product of primes. We establish similar results for an even larger family of pseudorandom sequences, constructed via difference matrices, in the case of an alphabet of any size. The constructions generalize those from Grant et al. In the case where the size of the alphabet is squarefree and where there are at least two prime factors, we obtain an improvement in the error term by comparison with the result of Grant et al.

تحميل البحث