ﻻ يوجد ملخص باللغة العربية
Unsupervised learning of identity-discriminative visual feature is appealing in real-world tasks where manual labelling is costly. However, the images of an identity can be visually discrepant when images are taken under different states, e.g. different camera views and poses. This visual discrepancy leads to great difficulty in unsupervised discriminative learning. Fortunately, in real-world tasks we could often know the states without human annotation, e.g. we can easily have the camera view labels in person re-identification and facial pose labels in face recognition. In this work we propose utilizing the state information as weak supervision to address the visual discrepancy caused by different states. We formulate a simple pseudo label model and utilize the state information in an attempt to refine the assigned pseudo labels by the weakly supervised decision boundary rectification and weakly supervised feature drift regularization. We evaluate our model on unsupervised person re-identification and pose-invariant face recognition. Despite the simplicity of our method, it could outperform the state-of-the-art results on Duke-reID, MultiPIE and CFP datasets with a standard ResNet-50 backbone. We also find our model could perform comparably with the standard supervised fine-tuning results on the three datasets. Code is available at https://github.com/KovenYu/state-information
The performance of person re-identification (Re-ID) has been seriously effected by the large cross-view appearance variations caused by mutual occlusions and background clutters. Hence learning a feature representation that can adaptively emphasize t
Visual attention has proven to be effective in improving the performance of person re-identification. Most existing methods apply visual attention heuristically by learning an additional attention map to re-weight the feature maps for person re-ident
In many real-world datasets, like WebVision, the performance of DNN based classifier is often limited by the noisy labeled data. To tackle this problem, some image related side information, such as captions and tags, often reveal underlying relations
Occluded person re-identification (ReID) aims to match person images with occlusion. It is fundamentally challenging because of the serious occlusion which aggravates the misalignment problem between images. At the cost of incorporating a pose estima
With the development of smart cities, urban surveillance video analysis will play a further significant role in intelligent transportation systems. Identifying the same target vehicle in large datasets from non-overlapping cameras should be highlight