ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning Scalable Multi-Agent Coordination by Spatial Differentiation for Traffic Signal Control

69   0   0.0 ( 0 )
 نشر من قبل Junjia Liu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The intelligent control of the traffic signal is critical to the optimization of transportation systems. To achieve global optimal traffic efficiency in large-scale road networks, recent works have focused on coordination among intersections, which have shown promising results. However, existing studies paid more attention to observations sharing among intersections (both explicit and implicit) and did not care about the consequences after decisions. In this paper, we design a multiagent coordination framework based on Deep Reinforcement Learning methods for traffic signal control, defined as {gamma}-Reward that includes both original {gamma}-Reward and {gamma}-Attention-Reward. Specifically, we propose the Spatial Differentiation method for coordination which uses the temporal-spatial information in the replay buffer to amend the reward of each action. A concise theoretical analysis that proves the proposed model can converge to Nash equilibrium is given. By extending the idea of Markov Chain to the dimension of space-time, this truly decentralized coordination mechanism replaces the graph attention method and realizes the decoupling of the road network, which is more scalable and more in line with practice. The simulation results show that the proposed model remains a state-of-the-art performance even not use a centralized setting. Code is available in https://github.com/Skylark0924/Gamma Reward.



قيم البحث

اقرأ أيضاً

Joint attention - the ability to purposefully coordinate attention with another agent, and mutually attend to the same thing -- is a critical component of human social cognition. In this paper, we ask whether joint attention can be useful as a mechan ism for improving multi-agent coordination and social learning. We first develop deep reinforcement learning (RL) agents with a recurrent visual attention architecture. We then train agents to minimize the difference between the attention weights that they apply to the environment at each timestep, and the attention of other agents. Our results show that this joint attention incentive improves agents ability to solve difficult coordination tasks, by reducing the exponential cost of exploring the joint multi-agent action space. Joint attention leads to higher performance than a competitive centralized critic baseline across multiple environments. Further, we show that joint attention enhances agents ability to learn from experts present in their environment, even when completing hard exploration tasks that do not require coordination. Taken together, these findings suggest that joint attention may be a useful inductive bias for multi-agent learning.
We present a scalable tree search planning algorithm for large multi-agent sequential decision problems that require dynamic collaboration. Teams of agents need to coordinate decisions in many domains, but naive approaches fail due to the exponential growth of the joint action space with the number of agents. We circumvent this complexity through an anytime approach that allows us to trade computation for approximation quality and also dynamically coordinate actions. Our algorithm comprises three elements: online planning with Monte Carlo Tree Search (MCTS), factored representations of local agent interactions with coordination graphs, and the iterative Max-Plus method for joint action selection. We evaluate our approach on the benchmark SysAdmin domain with static coordination graphs and achieve comparable performance with much lower computation cost than our MCTS baselines. We also introduce a multi-drone delivery domain with dynamic, i.e., state-dependent coordination graphs, and demonstrate how our approach scales to large problems on this domain that are intractable for other MCTS methods. We provide an open-source implementation of our algorithm at https://github.com/JuliaPOMDP/FactoredValueMCTS.jl.
This paper develops an efficient multi-agent deep reinforcement learning algorithm for cooperative controls in powergrids. Specifically, we consider the decentralized inverter-based secondary voltage control problem in distributed generators (DGs), w hich is first formulated as a cooperative multi-agent reinforcement learning (MARL) problem. We then propose a novel on-policy MARL algorithm, PowerNet, in which each agent (DG) learns a control policy based on (sub-)global reward but local states from its neighboring agents. Motivated by the fact that a local control from one agent has limited impact on agents distant from it, we exploit a novel spatial discount factor to reduce the effect from remote agents, to expedite the training process and improve scalability. Furthermore, a differentiable, learning-based communication protocol is employed to foster the collaborations among neighboring agents. In addition, to mitigate the effects of system uncertainty and random noise introduced during on-policy learning, we utilize an action smoothing factor to stabilize the policy execution. To facilitate training and evaluation, we develop PGSim, an efficient, high-fidelity powergrid simulation platform. Experimental results in two microgrid setups show that the developed PowerNet outperforms a conventional model-based control, as well as several state-of-the-art MARL algorithms. The decentralized learning scheme and high sample efficiency also make it viable to large-scale power grids.
79 - Zhe Xu , Agung Julius 2016
In this paper, we define a novel census signal temporal logic (CensusSTL) that focuses on the number of agents in different subsets of a group that complete a certain task specified by the signal temporal logic (STL). CensusSTL consists of an inner l ogic STL formula and an outer logic STL formula. We present a new inference algorithm to infer CensusSTL formulae from the trajectory data of a group of agents. We first identify the inner logic STL formula and then infer the subgroups based on whether the agents behaviors satisfy the inner logic formula at each time point. We use two different approaches to infer the subgroups based on similarity and complementarity, respectively. The outer logic CensusSTL formula is inferred from the census trajectories of different subgroups. We apply the algorithm in analyzing data from a soccer match by inferring the CensusSTL formula for different subgroups of a soccer team.
244 - Libing Wu , Min Wang , Dan Wu 2021
Adaptive traffic signal control plays a significant role in the construction of smart cities. This task is challenging because of many essential factors, such as cooperation among neighboring intersections and dynamic traffic scenarios. First, to fac ilitate cooperation of traffic signals, existing work adopts graph neural networks to incorporate the temporal and spatial influences of the surrounding intersections into the target intersection, where spatial-temporal information is used separately. However, one drawback of these methods is that the spatial-temporal correlations are not adequately exploited to obtain a better control scheme. Second, in a dynamic traffic environment, the historical state of the intersection is also critical for predicting future signal switching. Previous work mainly solves this problem using the current intersections state, neglecting the fact that traffic flow is continuously changing both spatially and temporally and does not handle the historical state. In this paper, we propose a novel neural network framework named DynSTGAT, which integrates dynamic historical state into a new spatial-temporal graph attention network to address the above two problems. More specifically, our DynSTGAT model employs a novel multi-head graph attention mechanism, which aims to adequately exploit the joint relations of spatial-temporal information. Then, to efficiently utilize the historical state information of the intersection, we design a sequence model with the temporal convolutional network (TCN) to capture the historical information and further merge it with the spatial information to improve its performance. Extensive experiments conducted in the multi-intersection scenario on synthetic data and real-world data confirm that our method can achieve superior performance in travel time and throughput against the state-of-the-art methods.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا