ﻻ يوجد ملخص باللغة العربية
Although person re-identification (ReID) has achieved significant improvement recently by enforcing part alignment, it is still a challenging task when it comes to distinguishing visually similar identities or identifying the occluded person. In these scenarios, magnifying details in each part features and selectively fusing them together may provide a feasible solution. In this work, we propose MagnifierNet, a triple-branch network which accurately mines details from whole to parts. Firstly, the holistic salient features are encoded by a global branch. Secondly, to enhance detailed representation for each semantic region, the Semantic Adversarial Branch is designed to learn from dynamically generated semantic-occluded samples during training. Meanwhile, we introduce Semantic Fusion Branch to filter out irrelevant noises by selectively fusing semantic region information sequentially. To further improve feature diversity, we introduce a novel loss function Semantic Diversity Loss to remove redundant overlaps across learned semantic representations. State-of-the-art performance has been achieved on three benchmarks by large margins. Specifically, the mAP score is improved by 6% and 5% on the most challenging CUHK03-L and CUHK03-D benchmarks.
Recently, the research interest of person re-identification (ReID) has gradually turned to video-based methods, which acquire a person representation by aggregating frame features of an entire video. However, existing video-based ReID methods do not
Existing alignment-based methods have to employ the pretrained human parsing models to achieve the pixel-level alignment, and cannot identify the personal belongings (e.g., backpacks and reticule) which are crucial to person re-ID. In this paper, we
Person reidentification (ReID) is a very hot research topic in machine learning and computer vision, and many person ReID approaches have been proposed; however, most of these methods assume that the same person has the same clothes within a short ti
Intra-camera supervision (ICS) for person re-identification (Re-ID) assumes that identity labels are independently annotated within each camera view and no inter-camera identity association is labeled. It is a new setting proposed recently to reduce
The main difficulty of person re-identification (ReID) lies in collecting annotated data and transferring the model across different domains. This paper presents UnrealPerson, a novel pipeline that makes full use of unreal image data to decrease the